THE DIADEMATUS GROUP OF THE ORB-WEAVER GENUS ARANEUS NORTH OF MEXICO (ARANEAE: ARANEIDAE)

HERBERT W. LEVI

Abstract

Among our commonest spiders are the large Arancus orb-weavers. Eighteen species are found north of Mexico. They are redescribed, their diagnostic characters illustrated, their ranges mapped, and notes on their habits recorded. Three species turned out to be new: A. washingtoni from northeastern U. S. and eastern Canada; A. yukon from Yukon Territory; and A. pima from the Southwest.

INTRODUCTION

Among the species included in the present revision are some of the commonest spiders of North America, although several Araneus species are quite rare. Collections were examined not only to get an idea of the variation and distribution of common species, but also with the hope of finding members of the rarer species. The enormity of the collections available slowed down the work immensely.

Because of the urgent need for identifieation and information on the distribution of the common spiders, I am presenting separately the diadematus group of the genus Araneus, some members of which have never been illustrated before. It may take many years before I have examined types of all names of the numerous genera placed within the family and the many species described in the genus Araneus in the Americas. At present I do not know the limits of the genus and have not decided whether certain species are best included in the genus Araneus.

The recognition of reliable diagnostic morphological features of species was one of the critical questions to be resolved. My conclusions agree entirely with those of Grasshoff (1968), but differ from those published by Archer (1951a, b). Archer thought that the species can be diagnosed by the shape of one single sclerite of the male palpus, the median apophysis, and the ventral view of the scape and epigynum of the female. Perhaps these structures will prove of value in differentiating genera; they certainly are of quite limited value for species diagnosis. Also, I agree with Grasshoff that leg spines have doubtful value in separating males of Araneus species; they are extremely variable within populations (L. D. Carmichael, in manuscript).

As in my revisions of theridiid spiders, long established names of common species were kept; changing them does not make sense. ${ }^{1}$

[^0]In this study the work of the late Dr. H. Wiehle on European spiders has been of tremendous help, as has also the recent study on variation and morphological criteria of several European Araneus species by Grasshoff (1968).

I wish to thank the numerous biologists who have contributed specimens for study: Mr. J. D. Berman; Mr. D. Bixler; Dr. R. E. Crabill of the United States National Muscum: Mr. Bruce Cutler; Dr. C. D. Dondale sent collections of the Canadian National Museum; Dr. M. G. Emsley of the Academy of Natural Sciences, Philadelphia; Dr. W. J. Gertsch of the American Museum of Natural History; Dr. O. Kraus of the Senckenbergische Naturforschende Gesellschaft; Mr. Robin Leech; Mr. G. H. Locket; Dr. D. C. Lowrie; Dr. M. Moritz of the Zoologisehes Museum der Humboldt Universität, Berlin; Mr. P. I. Persson of the
their attempt to resurrect names of Walekenaer for the manuscript illustrations of Abbot. Subjective judgment has to be used in interpreting these rather primitive illustrations of the dorsal aspect of spiders, the types of these names. While other biologists may feel sure of their judgment in these doubtful cases, I am not, and after having obtained copies of Abbot's drawings I find that I disagree with many of the Chamberlin and Ivie assiguments; many are obviously in error (Levi and Levi, 1961). The Statute of Limitations (Art. 23b) permits us now to assign many of these uncertain ancient names to the status of obsolete names, should they threaten familiar names that have been in common use for more than 50 years. Like any other tool used by the taxonomist, the Code has to be used with common sense.

My request to the Commission to resolve by plenary power the problem of the two family names, Araneidae versus Argiopidae, has been withdrawn because only a few, often those in opposition and those with least expericnce in taxonomy and nomenclature, state their opinions in writing to the Secretary. However, the noncontroversial request to place the name Argiope on the Official List of Generic Names in Zoology has not been withdrawn. Although sent to the Secretary of the Commission in May 1967, it has not been printed yet. Once printed the name is

Natural History Museum, Stockholm; Mr. T. R. Renault of the Canada Department of Forestry, Fredricton, New Brunswick; Miss Susan Riechert; Mr. V. D. Roth of the Southwestern Research Station; Dr. J. G. Sheals and Mr. D. Clark of the British Museum (Natural History); Dr. R. Snetsinger; Mr. W. A. Shear; Dr. E. Sutter of the Naturhistorisches Museum, Basel; Dr. S. L. Tuxen and Mr. B. Petersen of the Universitetets Zoologiska Museum, Copenhagen; Mr. I. Valovirta, University of Melsinki Zoological Museum; Dr. H. V. Weems, Jr. and Mr. K. J. Stone of the Florida Collection of Arthropods; Dr. T. Yaginuma; and Dr. G. Edmmendson and the staff of the University of Utah collections. My wife has helped with writing and editing.

This investigation was supported in part by Public Health Service Research Crant AI-01944 from the National Institutes of Allergy and Infectious Diseases.
protected by Art. 80 of the Int. Code Zool. Nomencl.

Instead of submitting the problem of the family name to the Commission, I have circulated a request for the opinion of colleagues. The poll included, of course, nontaxonomists working with orb-weavers. A majority of correspondents favored Araneidae (Araneidae, 43; Argiopidae, 29; Argyopidae, 1; outside of North America, Arancidae, 28; Argiopidae, 25; Argyopidae, I). I will continue to use the name Arancidac.

The problem of the spelling of spider generic names is puzzling. The Code (Art. 32) now considers incorrect the emendations of spellings by Thorell, almost universally adopted for 100 years. Changing the names now would conflict with Art. 23b (since the incorrect emendations are junior objective synonyms, Art. 33a), and also with the purposes of the Code and would certainly be wrong. Thus it seems to me that we have to follow the long accepted spellings of generic names as also generatly adopted by Bonnet in the Bibliographia Arancornm, and attempt to bring critical cases to the attention of the Commission. It is possible that the pertinent paragraphs of the Code might be clarified by a future International Congress to avoid unnecessary name changes.

Araneus Clerck ${ }^{1}$

Araneus Clerck, 1757, Svenska Spindlar, p. 15. Type species designated by Simon, 1893, Histoire Naturelle des Araignées, 1: 829, A. angnlatus Clerek. But the type is said to be A. diadematus Clerck by Petrunkevitch, 1928, Trans. Connecticut Acad. Sci., 29: 136 and Bonnet, 1955, Bibliographia Araneorum, 2: 408, although the type species is correctly stated to be A. angulatus by Petrunkevitch, 1911, Bull. Amer. Mus. Natur. Hist., 29: 255 and by Bonnet, 1950, Bull. Soc. d'Hist. Natur. Toulouse, 85: 1-9.
Aranca Linnaeus, 1758, Systema Naturae, 10th ed. p. 619. The only genus of spiders; A. diadema is listed first. No valid type designation seems to have been made previously, thus 1 here designate A. diadema Linnaeus. The generic name Aranca has always assumed to be a synonym for Araneus Clerek.
Epeira Walckenaer, 1805, Tablean des Aranéides, p. 53. Type species designated by Latreille, 1810, Considérations Générales, p. 124, Aranea diadema Linnaeus; a second designation is by Thorell, 1869, On European Spiclers, p. 53, Epeira diadcmata (Clerck). In 1928 Petrunkevitch (Trans. Connecticut Acad. Sci., p. 136) indicated that E. cormuta (Linnaeus) [sic] was the type. Iresumably he meant Arancus cornutus Clerck.
Neopora Simon, 1864, Histoire Naturelle des Araignées, p. 261. A name for a subgenus. The type species is N. diadema ($=$ Aranens diadematus Clerek) designated by Bonnet, 1958, Bibliographia Araneorum, 2: 3054.
Burgessia MeCook, 1894, American Spiders, 3: 182. A subgenus for the group comprising corticaria, miniata, bonsallac, mayo, bispinosa, pacificae as well as forata, linteata, and jumiperi. The type species is Epeira corticaria (Emerton) (= Arancus corticarius) here designated. Bonnet, 1955, Bibliographia Arancotum, 2: 917,
${ }^{1}$ Although the starting point of zoological nomenclature is Linnaeus' Systema Naturae, 10th edition, with the arbitrary date of 1 January 1758, the work of C. Clerek, 1757, Suenska Spindlar, puhlished before, is an exception permitted by Article 26 of the old International Code on Zoological Nomenclature passed at the XIlI Intemational Congress of Zoology of 1948. After the XV International Congress of Zoology in London in 1958 adopted a new Code (1961), Clerck's Aranci Suecici was placed on the Official List of Accepted Works by Direction 104 of the International Commission on Zoological Nomenclature [1959, Bull. Zool. Nomencl., 17(3-5): 89-91].
was in error when he said that McCook failed to inclucle species in the sulggenus.
Euaranea Archer 1951, Amer. Mus. Novitates, 1487: 34. Type species for new subgenus; Aranea cavatica (Keyserling) by original designation.

The structure of Araneus genitalia. The terms used for the sclerites of the palpus are those of Comstock (1910), which have become widely used. I used them in the revisions of Theridiidae and of Argiope (1968) and they were also used by Grasshoff (1968).

No terms are in general use to describe the female genitalia; I here follow Grasshoff. The epigynum has a prominent scape (Fig. 1). The scape is attached to the base. Below and behind the base are a pair of basal lamellae which are large and extend on each side of the epigynum of Araneus marmoreus (Figs. 1-3). The slitlike openings are on the venter and lead into a funnel which continues posteriorly but is partly open on one side as a groove. The groove, as can be seen in cleared or macerated preparations, runs into a funnelshaped ehamber toward the middle of the base and then bends toward the outside and continues under the lateral sclerites (crosshatched in Figs. 1-3). In A. diadematus a median posterior sclerite (Fig. 36) covers the grooves, while the fummels are more or less open posteriorly in A. marmorcus (Fig. 3).

The palpus of Araneus has a large terminal apoplysis (term. apoph., Figs. 4$6,8)$, a sclerite below the sulbterminal apopliysis (subterm. apoph., Figs. 4-6, S), and distal hematodocha (dist. hemat.) that are absent in Argiope and Gea (Levi, 1968) .

Species differences. Archer (1951) described and pietured only the median apoplyysis of the palpus (med. apoph. in Figs. 4-6, S) and the seape of the epigynum. He erected numerous araneid genera on the basis of the slape of the median apophysis. Unfortmately, the median apophysis turns out to be unreliable for separating species of Aranews and is pre-
sumably a poor character for separating genera. Related species often have a similar median apophysis (see A. gemma group, Figs. 199, 211, or A. saevus and A. diadematus, Figs. 38, 55). There are also individual differences in this structure within species (e. g., A. nordmanni, Figs. $61,63,65,67$). This umreliability of the median apophysis as a species specific character is of interest in view of its definite function in copulation: its median spine takes hold of the tip of the scape of the cpigynum (van Helsdingen, 1965; Grasshoff, 1968). The form of the scape also varies among individuals of a species.
The distance between the spine and the distal spine or ridge on the median apophysis varies in different species with the length of the epigynal scape. The spine is close to the distal end of the median apophysis in species having a short seape (A. gemma, A. gemmoides, A pima). The distance is large in those having a long scape (A. bicentenarius, A. andrewsi, A. diadematus, and A. saevus). In the related genus Eriophora, in which the particularly long seape reaches to the spimerets, the seape is matched by a shift in position and clongation of the median apophysis.
The shape of the conductor is of diagnostic value only in some species: it is an unusually large sclerite in A. corticarius (Fig. 120), and a very small, narrow one in A. trifolium (Fig. 179). The conductor in copulation embraces the scape of the epigynum, facing the median apophysis, forming a track on which the scape can glide in two directions.
Of far greater diagnostic value in separating species are the shapes of the embolus and terminal apophysis (term. apoph. in Figs. 4-6, S), structures casily seen but often slighted in illustrations of araneid species. (Seen in all illustrations of the mesal view of the palpus in this paper.) Part of the embolus enters the female duct system (the left embolus, the left opening and ducts). But during copulation the terminal apophysis comes to lie below the
base of the scape, against the abdomen, and supplies support.
The cap that is present on the embolus of virgin males (Levi, in press) differs in shape in different species. The eaps of some species (e.g., A. illaudatus) are very large and noticeable.
The paracymbium differs greatly among species within the genera Meta and Zygiella (Gertsch, 1964), but is similar in almost all Araneus species. This only illustrates the difficulty of making generalizations or of attempting to use only one sclerite of the palpus, such as the modian apophysis, for species diagnosis in all genera of the family. The paracymbium, during copulation, lies near the base of the median apophysis; it prevents the median apophysis from turning and by hooking into the tegulum border, acts as a stopping wedge between median apophysis and tegulum.
In the female the best diagnostic characters are those of the epigynum. Howcver, the length and wrinkling of the prominent scape varies, perhaps due to different folding. In most species the scape is short; however, in some species it is always long (bicentenarius, andrewsi, diadematus, and saevus). The general shape varies among species. The scape may break off during mating in almost any species, and usually is torn off in A. corticarius and A. groenlandicolus.

The general structure of the base of the epigynum is much less variable and differs more between species than among individuals of a species. As it is undesirable to cut off the scape to view the base, it is best examined in posterior view by pulling the epigynum slightly away from the abdomen. Unfortunately, most authors have not illustrated this posterior view, exceptions being Wiehle (1963) and recently Gertsch (1964) in revising American species of the arancid genus Zygiella. The basal lamellac are unfortunately also quite variable among different individuals of a species, as is shown by Grasshoff (1968, p. 46, fig. 41).

However, genitalia are not the only characters. Araneus corticarius has highly distinctive abdominal shape and coloration (Fig. 118). It cannot be confused with any other North American species. The crossshaped arrangement of markings on the dorsum of A. diadematus (Fig. 37) is diagnostic in North America, although not in Europe.

The second tibia in males of many speeies has strong spines and is often bent. Grasshoff (1968, p. 24, fig. 17) illustrated the considerable variation within the four species studied. While the spine pattern is not a good character for separating speeies of Araneus (L. D. Carmichael, in manuscript), the presence or absence of spines and modifications of tibia 2 may be used to separate some species.

The male of most species has a hook on the distal margin of the first coxa (Fig. 183), which fits into a proximal depression on the dorsal surface of his second femur, coupling the legs during mating. The coxal hooks are small and more posterior in some species (A. gemma) and absent in others (A. cavaticus). A cone or spur is present on the second coxa (Fig. 183) in some species. The hook on the first coxa and the corresponding depression are found in species of many araneid genera and do not seem to reflect close affinity.

Any diagnostic feature of any animal species is subject to variability within a certain range. This is true also of spiders. Curiously, this is denied by some spider specialists who consider any differences in structure (individual or geographic) to represent a "species difference." The variability of many characters of four Araneus species of Europe has been beautifully illustrated by Grasshoff (1968). My observations support Grasshoff's completely: while selerites in the palpus (Figs. 96-99, 103,104) and all parts of the epigynum show some variation among individuals (Figs. 76-92), nevertheless there are gaps in the variability between species.

Character displacement. "Character dis-
placement" is a useful term proposed by Brown and Wilson (1956) for the phenomenon that morphological characters of related species having overlapping ranges show greater difference in the area of overlap than in their allopatric distribution. Examples have been found whenever taxonomic revisions are made and there is abundant material. In my theridiid revisions I found character displacement between Theridion montanum Emerton and T. laurencei Gertsch and Archer (Levi, 1957a, p. 72). Specimens of Steatoda hespera Chamberlin and Ivie and Steatoda borealis (Hentz) are more distinct where the borders of their ranges meet, although I failed to point this out in my revision (Levi, 1957b). Argiope trifasciata (Forskål) males have a noticeably smaller palpus in the area of overlap with the very similar A. florida Chamberlin and Ivie, which has a larger palpus (Levi, 1968, p. $335,337)$.

The possibility of drawing erroneous conclusions by ignoring geographic and individual variation and picking up individual specimens is best shown in Araneus nordmamni. Araneus nordmanni is found in the same habitat, on forest trees, as the dark-colored A. sacvus. Where the ranges of the two species overlap, A. nordmanni is rarely dark, and shows little variation in size and shape. However, outside the range of A. saevus, in the southem part of the range of A. nordmamni, it is often black, it varies in size, and in no two males are the embolus (Figs. 69-75) and median apophysis exactly the same shape. Araneus nordmami is largest in the southwestern part of its range. By looking only at the median apophysis of the palpus of a few specimens and noting differences in size and color, Archer described A. pseudomelaena from the southwest and A. darlingtoni from southeast. The differences Archer observed are there, but by examining larger samples one can easily see that the differences are within the variation of A. nordmamni. Perhaps the differences among
populations in the southwest are emphasized by the isolation of the habitats in which this forest species can survive.
Introgression. Of considerable interest is the Aranens semma group of species, including five species north of Mexico. The eastern A. cavaticus is very distinct, but is elosest to A. gemma of the Pacific coast. There is the widespread A. gemmoides from the central states and provinces to the Pacific coast. All these species build large webs on barns, houses, and porches although their original habitat may have been cliffs and entrances to caves. In addition there are A. pima in Utah and Arizona, and A. illaudatus from Arizona to Texas. The habitats of the last two are uncertain, although they probably are also found on buildings.

Araneus gemma McCook was split by Chamberlin and Ivie into three species: A. gemma, A. genmoides, and A. pirus. With few specimens on hand the judgment was sound. However, any serics shows that A. gemma is quite variable, as is A. pirus; furthermore, at times A. gemma is collected with A . gemmoides. Some females are intermediate and cannot be assigned to (ither species (Figs. 215-217). Populations of A. gemmoides are relatively uniform exeept for coloration in the area of overlap with A. semma. Apparently the two species hybridize and introgression is taking place with gene flow into the A. gemma population. It is known that males may try to mate with females of the wrong species. Broken-off embolus caps are at times found on the epigynum of a different species. It is especially common to find large A. illandatns tips in the epigynum of A. pima. Apparently the cross of A. gemmoides \times A. gemma is fertile. This would produce a potentially interesting study. It is not followed up here.

It is not uncommon to collect females with the wrong males. This happened to as careful a naturalist as Emerton. Crasshoff (1964) reports that males of Arancus diadematus will court females of A. palli-
dus (Olivier) and tiny A. pallidus males will court A. diadernatus. In courtship the male plucks web threads in a rhythm characteristic for his species. Females do not respond to the plucking of a male of the wrong species. One male of A. diadematus gave up only after five hours of courting a female of A. pallidus.

Habits. All North American Arancus of the diadematus group have similar life histories. There is one generation, which matures in summer, mates in summer, and dies in fall after making a loose fluffy egg sac (Plate 1). Spiderlings leave the egg sac in spring (A. diadematus).

The virgin male has the embolus capped (Levi, in press). The function of the cap is not known, but it is not believed to transmit sperm although a duct is at times visible. Males are known to mate several times and to survive mating. It has been suggested that mating before sperm induction, as observed in some spiders, may remove the cap and permit the embolus to function (Kullmamn, van Helsdingen. personal communication). The cap is diagnostically different in each species. About half the males in collections are virgin and still have the cap, half have mated and have lost it. Virgin males wandering in seareh of a mate may be more likely to be collected.
In all collections examined, only one male was marked as having been killed and eaten by a female A . diadematus. The male when examined turned out to be an A. cavaticus, not the partner of the female. However, Grasshoff (1964) reports that the female of Araneus pallidus has to bite into the male's abdomen to permit holding on during copulation. In one case the female, feeding on an insect, was prevented from biting; the male could not hold on to the female, slid off, and was wrapped in silk like prey.
All species make an almost vertical orb web with about 18-30 radii, with a retreat above to the side of the web in leaves, bark, or lichens and connected with the

Plate 1. Egg sac of captive Araneus pima sp. n. from Arizana
hub by a signal line (Plate 2). During the day the spider rests in the retreat, at night usually in the center. The center has an irregular mesh. Araneus diadematus is more likely than other species to be found in the center of the web at daytime. Although all species mature at the same time, their variation in size is reflected in the diameter of the orb and the size of the prey handled. Also each species seems to have its own habitat, some preferring forests (A. saevus, A. nordmami, and the small A. corticarius), some meadows (A.
trifolium, A. marmoreus), city gardens (A. diadematus in North America), buildings or cliffs (A. cavaticus group). Araneus bicentenarius, often brightly colored, makes its retreat among lichens (Plate 3), the color of which it matches.
Species living in the open in herbaceous vegetation tend to have an oval abdomen (A. marmoreus, A. trifolium), while those living on trees and cliffs have humps (A. nordmanni, A. saevus, A. cavaticus). The adaptation of this curious correlation is not known, but is also believed true of

Plate 2. (Top) Web of Araneus cavaticus (Keyserling) powdered with corn storch, West Virginia. (Photo by W. A. Shear.) (Bottom) Web of A. gemmoides Chamberlin ond Ivie with adult female, Wisconsin.

Plate 3. Araneus bicentenarius (McCoak) in retreat amang lichens, West Virginia. Both spider and the lichens are the same shade af green. (Fram Ektachrame phata by W. A. Shear.)

European species. It has been suggested (W. S. Shear, personal communication) that only those that have a retreat in curled up leaves lack humps.

Western A. gemmoides and some A. gemma have black bars on the venter, which are distinct "eyes" in A. pima (Plate 4). I assume that when disturbed the spider zooms down its signal thread to appear at the center of the orb web. In South America I watched an araneid make maximum use of its ventral spots, which in the particular individual observed were in the shape of a face.

The habitat observations reported here are gleaned from the labels on vials. Only mature individuals were used. Most checklists and literature on habits are unreliable because the species determinations are in
doubt and often wrong. The specimens usually have not been turned over to a museum for safe keeping as voucher specimens. In mapping distributions, only specimens examined have been used.

Key to Femiales

1a. Abdomen with humps or angular anteriorly (Figs. 21, 37, 118)
1b. Abdomen oval to spherical, without humps or anterior angles (Figs. 144, 177)
2a. Posterior lamellae of epigynum showing on each side in ventral view as large curved folds; scape overhanging a depression bordered on each side (Figs. 1, 107) -...--
b. Posterior lamellae not visible in ventral view or, if visible, scape not overhanging a depression bordered on each side
3a. Scape of epigynum with more or less parallel sides, very rarely broken off (Figs. 138, 174)4

3b. Scape of epigynum tapered toward tip, or often broken off (Figs. 159, 167) 5
4a. Legs banded; a bordered depression on each side of epigynal scape in ventral view (Fig. 174); no median keel in posterior view (Fig. 176)trifolium
4 b . Legs not banded; base of epigynum a domed area truncate on the posterior side; openings posterior and separated by a keeled septum (Figs. 140, 142) --.---...-iviei
5a. Scape of epigynum widest at base; on each side of scape a shallow depression with a narrow rim (Fig. 167) .-........ yukon
5b. Scape, if present, widest close to its middle; scape hiding ventral depression (Fig. 159) and if scape is broken, rims wide (Fig. 162)
groenlandicolus
6a. Abdominal humps projecting toward sides; usually a transverse line between humps anterior of which abdomen is usually dark, posterior light (Fig. 118) --- corticarius
6b. Humps dorsal, transverse markings not as contrasting
7a. Scape long, at least twice as long as width of base

7b. Scape short

8a. Scape coiled (Fig. 52); southwest
santarita
8b. Most of scape straight (Figs. 45, 48) 9
9a. In posterior view of epigynum there is a median light groove (Figs. 17, 20, 29) -.-10
9 b . No such groove in posterior view 11
10a. Venter of groove (toward scape) dark and swollen, epigynal lamellae on each side large (Fig. 29); Pacific coastandrewsi
10b. Venter of groove not swollen toward scape, lamellae small (Figs. 17, 20);

Plote 4. Aroneus pimo sp. n. showing eye spots on venter of obdomen.

Canada, eastern United States to Southwest
11. Spider lak, blonen

11a. Spider dark, abdomen very dark, black, usually with a white lanceolate cardiac mark on abdomen (Fig. 51); forests; epigynum as in Figs. 42, 44, 45, 47, 48, 50 …-. saceus
1Ib. Spider light, abdomen almost always with light dorsal marks in shape of a cross (Fig. 37); city gardens; epigynum as in Figs. 34, 36
diadematus
12a. Epigynal scape with transverse annuli separated by grooves (Figs. 123, 124, 187, 188)13

12b. Epigynal scape lacking transverse annuli (Figs. 207, 224, 233)

14
13a. Scape twisted (Figs. 123, 124); base on each side of scape with a diagonal rim enclosing the median depression (Fig. 123); Newfoundland to New Hampshire washingtoni
13b. Scape straight (Figs. 187, 188); rims of depression hidden by scape (Fig. 187) .. 15
14a. Width of scape more than half width of epigynum (Fig. 187); epigynum in posterior view with median triangular sclerite (Fig. 189); Eastern United States and Canada, on overhanging cliffs, common on buildings
cavaticus

14b. Width of scape less than half base of epigynum (Figs. 87, 90); epigynum in posterior view with heart-shaped depression (Figs. 89, 92); widespread in forests
nordmanni
15a. Anterior end of epigynal scape constricted (Fig. 233); Texas and southwest - illaudatus
15b. Anterior end of scape is wide, scape tapered toward tip

16
16a. Epigynum and scape very small, scape triangular (Fig. 195); widespread in central Canada and United States to Pacific coast
gemmoides
16b. Epigynum and scape otherwise (Figs. 203, 205,218); Pacific coast and Southwest ...- 17
17a. Scape without lateral rims (Figs. 218, 221); a deep transverse groove in posterior view (Figs. 220, 223); California to Texas pima
17b. Scape with lateral rims, very variable (Figs. 203, 205); transverse groove very narrow if present (Figs. 204, 206); Pacific coast
gemma
Key to Males
la. First coxa with a hook on distal margin facing second coxa (Fig. 183)
1b. First coxa without hook on distal margin .- 9
2a. Conductor of palpus with teeth around margin (Figs. 23, 24, 31); median
apophysis with at least 2 distal spines (Figs. 23, 32)
2 h . Conductor of palpus smooth around margin; median apophysis with a keel on distal edge (Figs. 4, 110)
3a. Terminal apophysis with drawn-out tip (Figs. 31, 32); teeth around edge of conductor subequal (Fig. 31); Pacific coast .-..
3b. Tip of terminal apophysis an acute triangle (Figs. 23, 24); first tooth on embolus side of conductor noticeably larger than others (Figs. 23, 24); Canada, eastern U. S. to Southwestbicentenarins
4a. Second coxa with spur (Fig. 183) 6
4b. Second cosa without spur $\quad 5$
5a. Palpal conductor unusually large (Fig. 120); in mesal view median apophysis about 3 times as long as wide (Fig. 119); Pennsylvania to Alaska -............corticarins
5 b . Palpal conductor of normal size (Fig. 128); median apophysis about 2 times as long as wide (Fig. 127); Newfoumdland to New Hampshireashingtoni
6a. Terminal apophysis paralleled by a long subterminal apophysis (Figs. 4, 96-99, $103,104,110$)
(6). Subterminal apophysis a short stub 8

7a. Embolus sclerotized, subcircular at end (Figs. 4, 103, 104, 110); holarctic

marmorens

7b. Embolus longer than wide as in Figs. 6975, 96; holarctic
nordmami
Sa. Embolus a curved hook (Figs. 38, 40, 41); apical apophysis short, curved, sickleshaped (Figs. 38, 39) diadematns
8b. Embolus otherwise (Figs. 55, 57, 58); apical apophysis a long, strongly curved prong (Figs. 55, 56) saevus
9 a. Inner lamella of embolus a wide projecting plate of larger visible area than narrow conductor (Fig. 179); embolus with distal notch (Figs. 178, 180, 181) trifolium
$9 b$. Inner lamella of embolus, if projecting, with visible part always much smaller in area than concluctor (Fig. 172); embolus otherwise
10

10a. Second tibiae modified by being swollen or curved (Fig. 184)11

10b. Second tibiae straight, not swollen ----- 12
11a. Median apophysis with slender, graceful proximal spine and distal projections with strong, straight spines, the lower one with a dentate edge (Figs. 171, 172) _.....yukon
11b. Median apophysis with proximal spine stout and distal projections both bent out at right angles to main axis of median apophysis (Figs. 164, 165) groenlandicolus
12a. Terminal apophysis a sclerotized prong, widened just before tip (Figs. 145-148);
conductor with a pocket on lateral side (Figs. 146, 148); embolus as in Figs. 145, 149-151
iviei
12b. Terminal apophysis lightly sclerotized, fleshy, never widened near tip; conductor and embolus of different shape
13a. Males more than 10 mm total length; proximal spine of median apophysis placed in proximal half of sclerite; distal edge a keel (Figs. 191, 192); castern United States, Canada cavaticus
13b. Males less than 9 mm in total length; proximal spine of median apophysis placed close to distal spine (Figs. 211, 212, 238, 239); central, western and southwestern region
14a. Palpal tibia almost equal in size to bulb (Figs. 199, 200); spines of median apophysis slender; terminal apophysis truncate (Figs. 199, 200); widespread in central and western North America gemmoides
14b. Palpal tibia less than half area of bullb; spines of median apophysis stout; terminal apophysis more pointed; Pacific states, southwest to Texas
15a. Embolus pointed (Figs. 211, 214); embolus cap short (Fig. 213) _-_ gemma
151). Embolus truncate (Fig. 232); embolus cap elongate, pointed (Figs. 231, 240); Texas to California

16
16a. Total length $5-11 \mathrm{~mm}$; spines of median apophysis stout (Figs. 228, 229) -..... pima
16b. Total length less than 4 mm ; spines of median apophysis slender, recurved (Figs. 238, 239)
illandatus

Araneus angulatus Clerck Figures 9-14

Araneus angulatus Clerck, 1757, Svenska Spindlar, p. 22, pl. 1, figs. 1-3, ㅇ. Type specimens in the Natural History Museum, Stockhohm, lost. Locket and Millidge, 1953, British Spiders, 2: 127, figs. 80, 83, 우, ㅇ. Bonnet, 1955, Bibliographia Arancormm, 2: 433 (in part).
Aranea angulata, - Wiehle, 1931, in Dahl, Die Tierwelt Deutschlands, 23: 52, figs. 4, 5, 오, δ. Roewer, 1942, Katalog der Araneac, 1: 795 (in part).
Note. Although there are many literature records of this species in North America, all refer to large specimens of various other species (A. andrewsi; A. bicentenarius; A. saevus; A. marmoreus; A. nordmanni) that had been misidentified. No specimens of Araneus angulatus coming from North America have been found in collections.

Map 1. Distribution af Araneus bicentenarius (McCoak) and A. andrewsi (Archer).

The differences between A. angulatus and North American species are discussed under A. bicentenarius.

The web, described by Wiehle (1931) has bridge threads up to 5 m long at 3 m height. The number of spokes averages 21 and the snare region is $40-63 \mathrm{~cm}$ across.

Araneus bicentenarius (McCook)

Plate 3; Figures 15-26; Map 1

Epeira gigas Leach, 1815, Zoological Miscellany, 2: 132 , pl. 109. Female type probably from America in the British Museum, Natural History, examined. (Not A. gigas, - Comstock, 1912, 1940, The Spider Book and some other authors ${ }^{1}$.)
Epeira bicentemnaria McCook, 1888, Proc. Acad. Natur. Sci., Philadelphia, p. 195, figs. 3, 5, ㅇ. Syntypes from "northwestern Ohio and Allegheny mountains" lost.
Epeira angnlata var. bicentenaria, - McCook, 1893, American Spiders, 3: 186, pl. 10, figs. $3-5$, pl. 11, figs. 2-4, 우, ㅅ․
Aranea bicentenaria, - Archer, 1951, Amer. Mus. Novitates, 1487: 31, figs. 68, 78, 오, δ.
Aranea kisatchia Archer, 1951, Amer. Mus.

[^1]Novitates, 1487: 27, fig. 69, ㅇ. Female holotype from Grant Parish, Louisiana, in the American Museum of Natural History, examined. NEW SYNONYMY.

Note. Leach's description suggested that his Epeira gigas is A. bicentenarius. The type of E. gigas was found pinned and stuffed with cotton in the British Muscum by Mr. D. J. Clark. After placing it in alcohol Mr. D. J. Clark examined the specimen and reported it to be an unusually large specimen of A. angulatus; upon comparing it to my drawings he found it to match Figures 18, 19 of a southern A. bicentenarius. I have since examined it myself. The name A. gigas has been used by some authors for A. marmoreus, never before for A. bicentenarius. A junior homonym, Epeira gigas C. L. Koch, 1830, has been renamed A. grossus (C. L. Koch) and belongs to a species also closely related to A. angulatus. The spider was collected by McCook in 1882 at the bicentennial of the city of Philadelphia. By misprint the name was spelled with two n's in the first publication.

Description. Female from New Jersey. Carapace dark brown. Sternum dark brown with a lighter. branched mid-longitudinal band. Legs mottled brown with darker
bands. Abdomen very dark with folium. Venter dark brown to black, sometimes with a median light area. Abdomen with large humps. The dorsum has small sclerotized spots, the bases of setae, but all setae are short. Total length, 15 mm . Carapace, 5.9 mm long, 5.0 mm wide. First femur, 6.8 mm ; patella and tibia, 9.2 mm ; metatarsus, 5.4 mm ; tarsus, 1.8 mm . Second patella and tibia, 8.4 mm ; third, 5.0 mm ; fourth, 7.6 mm .

Male from New Hampshire. Coloration as in female exeept for an anterior, dia-mond-shaped, longitudinal white mark on dorsum of abdomen. The first coxa has a hook on the distal margin, the second a spur. The second tibia is very strong with strong macrosetae. Total length, 7 mm . Carapace, 6.5 mm long, 4.6 mm wide. First femur, 6.9 mm ; patella and tibia, 8.4 mm ; metatarsus, 4.9 mm ; tarsus, 1.7 mm . Sceond patella and tibia, 8.4 mm ; third, 5.0 mm ; fourth, 6.7 mm .

Variation. Individuals of this rare species differ in size and coloration. The largest specimens come from the southem United States. Females are up to 28 mm in total length; one measuring 21 mm in total length had the carapace 10.0 mm long, 8.6 mm wide. The smallest specimen comes from Canada; the smallest female measured 13 mm in total length, carapace 6.1 mm long, 5.6 mm wide. Many northem and southem specimens are strikingly colored on the abdomen (Plate 3, Fig. 22), others are just shades of brown in alcohol (Fig. 21). The scape of the epigynum is variable in length, and the median depressed area in posterior view is of variable width, narrowest in some southern specimens (Fig. 20) called A. kisatchius by Archer. However, intermediate epigyna are common.

Diagnosis. Females of A. bicentenarius and A. andreusi differ from A. diadematus and A. saecus, both of which also have a long epigynal scape, by having the median area of the epigynum in posterior view depressed and light (Figs. 17, 20, 29).

Males of A. bicentenarius and A. andrewsi differ from males of other groups by having the margin of the conductor toothed (Figs. 23, 24, 31, and easily seen in apieal view) and by the shape of the embolus, the tip of which can only be seen in ventral view (Figs. 26, 33) after removal of the conductor.

The related Eurasian A. angulatus has the median, posterior area of the epigynum swollen and selerotized, rather than depressed (Fig. 11), and the embolus and terminal apophysis of the palpus (Figs. 12-14) differ in shape from those of the two North American species.

In females of the related Pacific coast A. andrewsi, the median posterior depressed area of the epigynum is distally (ventrally) black and swollen (Fig. 29); that of A. bicentenarius is not swollen and is light in color (Figs. 17, 20). Males of A. andrewsi have the tip of the terminal apophysis selerotized and pointed (Figs. 31, 32), while that of A. bicentenarius is an acute fleshy lobe (Figs. 23, 24). The embolus can be seen under the terminal apophysis inside the palpus. The embolus differs slightly in shape in different specimens; its opening is ventral and is partly hidden by the conductor.

Note. In collections and literature A. bicentenarius has often been called A. angulatus, as have large specimens of various North American Araneus species.

Habits. Araneus bicentenarius is found on trees in woods. Onc brightly marked specimen was collected by a botanist among lichens on jack pine (Pinus banksiana). The dorsal pattern makes the spider disappear among Evernia mesomorpha, Parmelia aurulenta, and P. caperata. (L. L. Darrow, personal communication.) Another was green when collected, and "blended perfectly with lichens, etc." on a maple tree in West Virginia. (Plate 3) (W. A. Shear, personal communication). This last specimen was brown in alcohol and did not have contrasting markings. Most collections of this rare species consist

Map. 2. Distribution of Araneus diademafus Clerck, Araneus saevus (L. Kach) and Araneus santarita (Archer).
of single specimens, very few of which are males.

Distribution. Eastern North America from Nova Scotia, Minnesota to northem Florida and Texas (Map 1); one male came from Coyote, New Mexico.

Araneus andrewsi (Archer)
Figures 27-33; Map 1
Aranea andrewsi Archer, 1951, Amer. Mus. Novitates, 1487: 31, figs. 63, 64, 82, 우, ô. Male holotype from Clarcmont, California, in the American Museum of Natural History.

Description. Female. Carapace brown, darker on sides. Sternum mottled brown. Legs mottled dark brown, indistinetly banded. Dorsum of abdomen brownish black, mottled, with a folium. Ventrally, area between epigynum and spinnerets dark gray. Carapace hairy. Abdomen with two large humps, very hairy, and with many very small sclerotized plates, the bases of setac. Total length, 14 mm . Carapace, 6.7 mm long, 5.9 mm wide. First femur, 6.3 mm ; patella and tibia, 9.2
mm ; metatarsus, 5.1 mm ; tarsus, 1.8 mm . Second patella and tibia, 8.4 mm ; third, 5.1 mm ; fourth, 7.6 mm .

Male. Coloration like that of female; very dark and hairy. Abdomen with distinct humps. First coxa with a hook on distal margin, second with a large cone. Second tibia strong and bent, armed with macrosetae. Total length, 11 mm . Carapace, 5.2 mm long, 4.4 mm wide. First femur, 5.9 mm ; patella and tibia, 8.4 mm ; metatarsus, 4.6 mm ; tarsus, 1.7 mm . Second patella and tibia, 7.6 mm ; third, 4.2 mm ; fourth, 5.9 mm .

Variation. Many individuals are almost black with the folium outline barely visible. Females measured 11-22 mm in total length, with carapace $5.0-7.8 \mathrm{~mm}$ long, $4.8-6.1 \mathrm{~mm}$ wide. Males measured $S-11$ mm in total length; the smallest had the carapace 4.7 mm long, 3.6 mm wide.

Diagnosis. This Pacific coast species cannot be confused with any others in California. It differs from the related eastem North American A. bicentenarius in details of the genitalia (see under A. bicentenarius).

Habits. Specimens have been collected in a house basement. Another was in curled-up bark of a eucalyptus tree, with the web at chest height, strung toward a fence below the spider. Other specimens were collected on tree bark, and on the trunk of a walnut tree (Juglans californica).

Distribution. Araneus andrewsi is found from Oregon to southem Califomia along the coast (Map 1).

Araneus diadematus Clerck, Cross Spider ${ }^{1}$ Figures 34-41, 95, 184-186; Map 2

Araneus diadematus Clerck, 1757, Svenska Spindlar, p. 25, pl. 1, fig. 4. The type specimens in the Natural History Museum, Stockhohm, lost. Locket and Millidge, 1953, British Spiders, 2: 127, figs. 84a, 85a, 86a, 87a, 오, ㅇ. Bonnet, 1955, Bibliographia Araneorum, 2: 486. Grasshoff, 1968, Abhandl. Senckenbergischen Naturforsch. Ges., 516: 1-100.
Epeira diademata, - Wiehle, 1927, Z. Morphol.

[^2]Ökol. Tiere, 8: 492; Nielsen, 1932, Biology of Spiders, Coponhagen, Vol. 2: 421.
Aranea diadema, - Wiehte, 1931, in Dahl, Die Tierwelt Deutschlands, 23: 70, figs. 103-108, 우, 乃. Roewer, 1942, Katalog der Araneae, 1: 797. Kaston, 1948, Bull. Connecticut Ceol. Natur. Hist. Surv., 70: 249, figs. 779-782, ㅇ, $\hat{0}$.

Description. Female. Carapace yellowbrown, stemum dark brown, coxae light brown. Legs yellow-brown banded with darker brown. Dorsum of abdomen with white marks anteriorly in form of a cross (Fig. 37), a folium posteriorly. Venter with a median black band and a pair of white spots closer to spinnerets than to epigastric groove. Dorsum of abdomen often with two humps. Female from Massachusetts measured total length. 13 mm . Carapace. 4.6 mm long, 3.9 mm wide. First femur, 5.0 mm ; patella and tibia, 6.7 mm ; metatarsus, 4.5 mm ; tarsus, 1.7 mm . Second patella and tibia, 5.9 mm ; third, 3.5 mm ; fourth, 5.5 mm .

Male. Banding of legs less distinct than in female and color generally darker. Abdomen with a distinct white cross, and folium more distinct than in female. The abdomen lacks humps. Second tibia modified by being stronger and having very strong short spines. A specimen from Massachusetts measured 8 mm in total length. Carapace, 3.8 mm long, 3.4 mm wide. First femur, 5.2 mm ; patella and tibia, 7.1 mm ; metatarsus, 4.7 mm ; tarsus, 1.5 mm . Second patella and tibia, 5.7 mm ; third, 3.4 mm ; fourth, 5.2 mm .

Variation. Females vary $6.5-20 \mathrm{~mm}$ in total length, carapace $3.5-7.2 \mathrm{~mm}$ long, $3.2-6.1 \mathrm{~mm}$ wide. Total length of males, $5.7-13 \mathrm{~mm}$.

The shape of the abdomen and size of humps varies. The epigynal scape may vary slightly in length and the posterior triangular sclerite (Fig. 36) varies in shape and is often much less pointed behind. There are also small differences in the embolus curvature. This species and its variation were recently studied by Grasshoff (1968).

Diagnosis. Almost all females and many males can readily be recognized by the white marks arranged in the form of a cross on the dorsum of the abdomen (Fig. 37). No other species in North America has the eross mark. In addition, females are distinguished by the posterior face of the epigynum, which has a median triangular selerite with the straight edge out, pointed end in (dorsally) (Fig. 36). The homologous selerite in A. saevus has the outer flat edge with a median noteh (Figs. 44, 47, 50) and the selerite heartshaped; the notch leads to a depression under the scape (Fig. 45) not present in A. diadematus (Fig. 34). Araneus diadematus has the openings usually distinetly visible in ventral view anterior of the triangular plate (Fig. 34).

Males are separated from all other Araneus species by the recurved embolus, triangular and pointed at its tip (Figs. 38, 40, 41), from A. saevus by the short, slightly curved terminal apophysis, and by the shape of the conductor (Figs. 38, 39).

Habits. In Europe the species is widespread and common in woods, gardens, and fields. In eastem North America, A. diadematus seems to do well only in eities in shrubs between houses, a habitat not to the liking of any native species of Araneus. In the west records are "from floor of food store," "web in woodpile," and many in cities. It may take two years for the animal to mature in Europe (Locket and Millidge, 1953). The female is more likely to remain in the center of the web at daytime than other American species. The species has been used for experimental research. The web has about 30 spokes and is made at up to 1.5 m height. The web has been illustrated by Wichle, 1927, and Nielsen, 1932; the egg sac by Nielsen.

Distribution. This Eurasian species appears introduced, judging by its limited distribution in North America and its preferred habitat of shrubs surrounding eity houses. It survives only in a narrow belt from Newfoundland south to Rhode Island,
west to Vancouver and Oregon, more abundant on the milder coasts than in the Great Plains and mountain states (Map 2). Samples of records are St. Johns, Newfoundland; Quebec; Toronto; Vancouver; Victoria; Boston; Newport, Rhode Island; Syracuse; Ithaca; Rochester; Detroit; East Lansing; Seattle; Portland, and some smaller towns. The oldest American collections are about 100 years old and come from the northeast. The species does occur in Siberia and Japan. Specimens from the USSR, 64 km SSW of Irkutsk on Lake Baikal, were examined; they differed more from European ones than do North American specimens, presumably due to geographic variation.

Araneus saevus (L. Koch)

 Figures 7-8, 42-51, 55-60; Map 2Epeira sacva L. Koch, 1872, Z. Ferdinandem Tirol Vorarlberg, (3) 17: 323. Male holotype specimens from Bad Ratzes, Austria [above Siusi, Trentino Alto Adige, Italy], in the British Museum, Natural History, examined.
Epeira solitaria Emerton, 1884, Trans. Connecticut Acad. Sci., $9(6): 299$, pl. 33, fig. 11, pl. 35, fig. 3, ô. Male holotype from Peabody, Massachusetts, in the Museum of Comparative Zoology, examined.
Epeira silvatica, — Emerton, 1884, Trans. Connecticut Acad. Sci., $9(6)$: 300 (in part), pl. 35, figs. 1-6, 오. Female paralectotype here designated, not lectotype.
Epeira nigra Emerton, 1894, Trans. Comnecticut Acad. Sci., $14(3): 402$, pl. 1, fig. 1, ㅇ, $\hat{\delta}$. Male and femate syntypes from Laggan, Canada [" $5000-8500$ " in Rocky Momntains near Canadian Pacific Railway" a station near present-day Lake Louise], in the Muscum of Comparative Zoology, examined.
Aranea sacva,-Roewer, 1942, Katalog der Araneae, 1: 791.
Aranea solitaria, - Roewer, 1942, Katalog der Araneae, 1: 863. Kaston, 1948, Bull. Comecticut Geol. Natır. Hist. Surv., 70: 250, figs. 785-786, 796-797, ㅇ, ô.
Araneus sacuns, - Tullgren, 1952, Entomol. Tidskr., 73: 164 , figs. 10,12, ㅇ, ㅅ. Bonnet, 1955, Bibliographia Araneorum, 2: 588. Wiehle, 1963, Zool. Jahrb. Abt. System., 90: 276, figs. 84-92, 오, $\hat{\text { oै }}$
Description. Female from near Lake Louise, Alberta. Carapace, sternum and

[^3]legs dark brown to black with some silvery hair. Abdomen dark brown with a darker folium, usually with a white anterior longitudinal cardiac mark and two ventral white spots side by side. Abdomen covered with long and short hair. Total length, 13 mm . Carapace, 5.4 mm long, 4.6 mm wide. First femur, 5.3 mm ; patella and tibia, 7.1 mm ; metatarsus, 4.2 mm ; tarsus, 1.7 mm . Second patella and tibia, 6.4 mm ; third, 4.2 mm ; fourth, 6.5 mm .

Male from same locality. Male a little darker than female. First coxa with a hook on distal margin, the second with a spur. Second tibia swollen and with macrosetae. Total length, 9 mm . Carapace, 5.0 mm long, 4.0 mm wide. First femur, 5.0 mm ; patella and tibia, 6.3 mm ; metatarsus, 3.5 mm ; tarsus, 1.4 mm . Second patella and tibia, 6.1 mm ; third, 3.8 mm ; fourth, 5.4 min.

Variation. Although the abdomen is usually black with an anterior white cardiac mark (Fig. 51), at times the color is brown, but the white mark may persist. Females varied in total length $11-17 \mathrm{~mm}$, carapace, 4.0-6.0 mm long, 3.2-5.2 mm wide; males were $9-11 \mathrm{~mm}$ in total length, carapace, $5.0-5.2 \mathrm{~mm}$ long, $4.0-4.5 \mathrm{~mm}$ wide.

Diagnosis. Although many specimens in collections were misidentified, females can be confused only with A. diadematus. The abdomen of A. sacvus does not have the spots arranged in the eross typical of A. diadematns and the epigynum differs in details (see A. diadematus).

The male may be confused with A. nordmamni, but unlike nordmanni the terminal apophysis, a black prong, is very strongly curved (Figs. 7, 8, 5.5, 56).

Habits. Arancus sacvus is found in forests on trees; it has been found on lodgepole pine (Pinus contorta) in the Canadian Rockies, and on a poplar tree (Populus sp.) in Maine.

Distribution. Comparison of specimens confirmed Wiehle's recent observation (Wichle, 1963) that A. solitarius of North

America is the same as the Eurasian A. sacous. The species is found in America probably from southem Alaska south to New York state and Oregon (Map 2).

Araneus santarita (Archer)

 Figures 52-54; Map 2Aranea santarita Archer, 1951, Amer. Mus. Novitates, 1587: 24, fig. 65, ㅇ. Female holotype from Santa Rita Mtns., Arizona, in the American Musenm of Natural History, examined.
Description. Female holotype. Head area dark brown; posterior and sides of carapace lighter. Stermm brown with white median longitudinal band. Legs brown with bands barely showing. The damaged abdomen is slightly reddish in color, and has small hmmps. Total length, 17 mm . Carapace, 6.0 mm long, 5.9 mm wide. First femur, 8.6 mm ; patella and tibia, 10.0 mm ; metatarsus, 6.7 mm ; tarsus, 2.4 mm . Second patella and tibia, 9.6 mm ; third, 6.0 mm ; fourth, 8.5 mm .

Diagnosis. This may be an atypical specimen of A. sacuus. It differs by its more twisted epigynal scape (Fig. 52) and details in posterior aspect of the epigynum (Fig. 54).

Distribution. This species is known only from the type specimen from Arizona (Map 2).

Araneus nordmanni (Thorell) Figures 61-94, 96-99; Map 3

Epeira nordmanni Thorell, 1870, Remarks on Synonyms of European Spiders, p. 4. Holotype from Uppland, Sweden [area north of Stockholm including Uppsala]. The type was destroyed when the Swedish freighter "Oklahoma" earrying it in the mail sank off Creat Britain in December 1953. Thorell, 1873, Remarks on Synonyms of European Spiders, p. 54. Emerton, 1885, Trans. Connecticut Acad. Sei., 6: 301, pl. 3.3, fig. 6, ㅇ: Emerton, 1894, Trans. Comecticut Aead. Sci., 9: 403, pl. 1, fig. 2, ㅇ, ô. Nielsen, 1932, The Biology of Spiders, Copenhagen, Vol. 1, fig. 38.
Epeira silvatica Emerton, 1884, Trans. Connecticut Acad. Sci., 6: 300, pl. 33, fig. 13, pl. 35, figs. 1, 4, 3. Male lectotype from Beverly, Massachusetts, in the Mnsenm of Comparative Zoology, here designated, examined.

Figures 55-60. Araneus saevus (L. Koch), left palpus. 55. Mesal. 56. Ventral. 57-60. Embolus. 57. With cap. 58, 59. Without cap. 60. Different aspects of a cap.

[^4]

Map 3. Distribution of Araneus nordmanni (Thorell).

Aranea nordmami, - Wiehle, 1931, in Dahl, Tierwelt Dentschlands, 23: 58, figs. 84, 85, ㅇ. Roewer, 1942, Katalog der Araneac, 1: 801. Kaston, 1948, Bull. Connecticut Ceol. Natur. Hist. Surv., 70: 250, figs. 783-784, 793-795, ㅇ, ठ.
Aranca darlingtoni Archer, 1951, Amer. Mus. Novitates, 1487: 25, figs. 71, 75, ㅇ, ó Female holotype from Durbin, West Virginia, in the American Museum of Natural History; paratypes examined. NEW SYNONYMY.
Aranea pseudomelacna Archer, 1951, Amer. Mus. Novitates, 1487: 26, figs. 70, 79, ㅇ, ò. Male holotype from Long's Peak, Colorado, in the American Museum of Natural History, examined. NEW SYNONYMY.
Araneus nordmami, - Bonnet, 1955, Bibliographia Arancorum, 2: 553. Wiehle, 1963, Zool. Jahrl). Abt. System., 90: 271, figs. 74-83, ㅇ, δ.

Note. Archer named American specimens A. darlingtoni because he thought that European ones lack the basal spur on coxa II. Wiehle (1963) illustrated the spur, and all European males examined had it. Also Archer indicates that "on the endal side [of the median apophysis] below the spur is a rounded angle, a feature entirely missing in A. nordmamni." As discussed in the introduction, the median apophysis by itself is not a good character to separate species.

Araneus pseudomelaena Archer was thought to be a valid entity, but extremely variable. As more collections were examined it was found that those specimens

Figures 76-94. Araneus nordmanni (Thorell). 76-92. Epigynum. 76-78. (Arizona). 79-81. (Texas). 82-84. (Oregon). 85-86. (Brit. Columbia). 87-89. (Montana). 9092. (North Carolina). 76, 79, 82, 87, 90. Ventral. 77, 80, 83, 86, 88, 91. Lateral. 78, 81, 84, 89, 92. Posterior. 93, 94. Female abdomen. 93. (Montana). 94. (Texas). Figure 95. A. diadematus Clerck, female, venter of cephalatharax.
(Size indicators 0.5 mm , abdamens 5 mm)
aseribed to pseudomelaena were all allopatric with A. nordmanni, and also that many specimens had to be arbitrarily placed in one or the other. The problem of A. psendomelaena is discussed in greater detail in the introduction and in the paragraph on variation below.

Description. A female specimen from Montana had carapace light brown, sternum dark brown, corae and femora light brown, distal segments of legs banded, dorsum of abdomen with a distinct folium (Fig. 93), venter with a dark brown band between epigynum and spinnerets, on each side of which is a white bracket. Dorsum of abdomen with two humps. Total length, 8.5 mm . Carapace, 3.2 mm long, 2.5 mm wide. First femur, 3.4 mm ; patella and tibia, 4.3 mm ; metatarsus, 2.8 mm ; tarsus, 1.2 mm . Second patella and tibia, 3.8 mm ; third, 2.4 mm ; fourth, 3.5 mm .

A female from Arizona had the carapace rich dark brown, stemum dark brown, and legs dark brown. Only edges of labium and of endites light. Abdomen brown to black. Venter with two white spots side by side. Sometimes a white longitudinal mark between two humps (Fig. 94) on abdomen. Total length, 15 mm . Carapace, 6.5 mm long, 5.6 mm wide. First femur, 6.8 mm ; patella and tibia, 8.5 mm ; metatarsus, 5.5 mm ; tarsus, 1.7 mm . Second patella and tibia, 8.4 mm ; third, 5.4 mm ; fourth, 8.0 mm .

Male. A specimen from Montana had coloration as in female. Venter with a black band and two white brackets, or brackets often reduced to four white spots. The abdomen is longer than wide and much wider in front than behind. The humps are small. The first coxa has a distal hook, the second a spur. The second tibia is bent and bears strong macrosetae. Total length, 7.5 mm . Carapace, 4.2 mm long, 3.2 wide. First femur, 4.6 mm ; patella and tibia, 5.8 mm ; metatarsus, 3.4 mm ; tarsus, 1.2 mm . Second patella and tibia, 4.7 mm ; third, 3.0 mm ; fourth, 4.6 mm .

A male from Graham Mountains, Arizona, had coloration like that of female from Arizona. Distal segments of legs lighter and banded. Abdomen almost black with two humps. First coxa with a hook on distal margin, sceond with a spur. Second tibia modified with spines and swollen. Total length, 10 mm . Carapace, 6.4 mm long, 5.5 mm wide. First femur, 7.5 mm ; patella and tibia, 9.2 mm ; metatarsus, 5.7 mm ; tarsus, 1.7 mm . Second patella and tibia, 8.0 mm ; third, 5.0 mm ; fourth, 7.6 mm .

Variation. The size and coloration of this species are variable. The largest and darkest speeimens are found in the southwestern part of the range; the size given above is for the largest. The total length of females is $7-19 \mathrm{~mm}$, the smallest having the carapace 3.0 mm long, 2.5 mm wide. Males range $6-10 \mathrm{~mm}$, the smallest having the carapace 3.1 mm long, 2.8 mm wide.

Often specimens in alcohol are strikingly colored black and white, the legs contrastingly banded.

The genitalia of A. nordmanni become increasingly variable as one moves south, especially the structures of the male palpus, including the median apophysis so carefully studied by Archer (Figs. 61-6S). But no two males in the southern part of the range have the median apophysis or the embolus identical (Figs. 69-75, 96-99), and as these variable southem populations are allopatric with the less variable northern A. nordmanni, and many males would have to be arbitrarily placed, they are considered one species. Except for epigynum size and scape length and shape, the epigyna are all alike.

Diagnosis. In the part of the range in which A. nordmammi overlaps with A. saevus, the former is smaller than the latter species; outside the range of A. sacvus it is larger. Females of A. nordmanni have a much shorter scape (Figs. 87, 90) than those of A. saevus. The species can be confused with the sympatrie A. cavaticus

in the eastem part of Canada and United States; however, in posterior view of A. nordmami the rims of the epigynum enclose a semicircular, heart-shaped depression (Figs. 89, 92) that is absent in A. cavaticus (Fig. 189). A. nordmami females have humps on the abdomen. distinguishing them from females of A. manitobae, which have a somewhat similar epigynum.

The prong of the terminal apophysis of the male palp (Figs. 96-99) is less selerotized and less strongly curved in A. nordmamni than in A. saevus. The shape of the embolus, which opens on a tip pointing away from the cymbium, is quite characteristic (Figs. 69-75) and distinguishes all male specimens of A. nordmanni from all other North American Araneus species.

Habits. Araneus nordmami is found on trees or, sometimes, boulders, often in dark coniferous forests, and often at high elevations in mountains (for instance, Mt. Grizzly, Brit. Col., at $1600-2200 \mathrm{~m}$ elevation and Long's Peak in Colorado). Collection comments read: On lodgepole pine (Pinus contorta) in Alberta; on bush in Montana; on birch (Betula sp.) on Mt. Katahdin, Maine; on building in Poreupine Mts., Michigan; mixed ponderosa pine (Pinus ponderosa) and juniper (Jumiperus sp.) in Springerville, Arizona. Nielsen (1932) shows a retreat among lichens on branches.

Distribution. Araneus nordmanni was first described from Scandinavia. It has since only rarely been found in Europe. I have examined specimens from Adelboden, Switzerland; Ciant Mountains, now eastern Poland; Uppland, Sweden; and Järve, Finland. All are much alike and much like specimens from the northern parts of North America. A new record from 64 km SSW of Irkutsk, on Lake Baikal, Siberia, USSR, 13. V'III. 1968 (B. and J. Hocking), indicates that this species does have a wide distribution in Eurasia. In North America it seems to occur in forested regions north of Mexico (Map 3).

Araneus marmoreus Clerck, Marbled Spider Figures 1-6, 100-105, 107-113, 183; Map 4
Arancus marmoreus Clerck, 1757, Svenska Spindlar, p. 29, pl. 1, fig. 2, ㅇ. Female type from Sweden in the Natural History Museum, Stockholm, lost. Locket and Millidge, 1953, British Spiders, 2: 130, figs. 79d, 84e, 85e, 86e, 87b, ㅇ, of. Bonnet, 1955, Bibliographia Arancorum, 2: 534. Grasshoff, M., 1968, Abhandl. Senckenbergischen Naturforsch. Ges., 516: 1-100.
Aranea raji Scopoli, 1763, Entomologia Carniolica, p. 394. The Scopoli collection was destroyed in the 18th century (Horn and Kahle, 1936, Entomol. Beihefte, 3: 252). Wiehle, 1931, in Dahl, Die Tierwelt Deutschlands, 23, p. 75, figs. 109-114, ㅇ, i. Roewer, 19.42, Katalog der Arancae, 1: 802.
Epeira insularis Hentz, 1847, Boston J. Natur. Hist. Soc., 5: 470, pl. 30, fig. 10, + . Female holotype from an island in the Tennessee River, destroyed. Emerton, 1884, Trans. Connecticut Acad. Sci., 6: 309, pl. 33, fig. 1, pl. 35, fig. 18, 우, $\hat{\text { or }}$ Keyserling, 1892, Die Spimen Amerikas, 4: 170, pl. 8, fig. 126, 오.
Epeira obesa 1 Ientz, 1847, Boston J. Natur. Hist. Soc., 5: 471, pl. 30, fig. 11, ㅇ․ Female holotype from Maine, destroyed.
Epcira marmorca, - Emerton, 1884, Trans. Connecticut Acad. Sci., 6: 307, pl. 33, fig. 2, pl. 35, fig. 17, ㅇ, $\widehat{0}$.
Aranea gigas, - Comstock, 1912, The Spider Book, p. 475, figs. 493-498, ㅇ, of; 1940, The Spider Book, rev. ed., p. 489, figs. 493-498, 우, $\hat{o}^{\text {. }}$ Not A. gigas Leach; not A. gigas C. L. Koch.
Aranca tusigia Chamberlin, 1919, Ann. Entomol. Soc. Amer., 12: 254, pl. 19, fig. 3, ô. Male holotype from Chalk Creek, Utah, in the Museum of Comparative Zoology, examined. NEW SYNONYMIY.
Epeira raii, - Kaston, 1948, Bull. Connecticut Ceol. Natur. Hist. Surv., 70: 257, figs. 816-822, 2048-2049.

Description. Female from Michigan. Carapace light brown, stemum dark brown, legs light brown, indistinctly banded. Abdomen with dorsum white to yellow or orange, having a dark pattem of grays and blacks, with black lines around light spots. Venter with a black band enclosed by white brackets. Total length, 14 mm . Carapace, 5.2 mm long, 4.5 mm wide. First femur, 5.4 mm ; patella and tibia, 6.7 mm ; metatarsus, 4.0 mm ; tarsus, 1.6 mm . Second

Map 4. Distribution of Araneus marmoreus Clerck.
patella and tibia, 6.4 mm ; third, 4.0 mm ; fourth, 6.0 mm .

Male from Michigan. Coloration like that of female with legs more distinctly banded. The first coxa has a hook on the distal ventral rim, the second cosa a spur. The second tibia is swollen and bears macrosetae. Total length of a specimen from Michigan, 8.4 mm . Carapace, 5.0 mm long, 3.7 mm wide. First femur, 5.0 mm ; patella and tibia, 6.7 mm ; metatarsus, 3.6 mm ; tarsus, 1.2 mm . Second patella and tibia, 5.9 mm ; third, 3.5 mm ; fourth. 5.0 mm .

Voriotion. Total length of females, 9-18 mm ; carapace 2.7-5.2 mm long, $2.3-4.5 \mathrm{~mm}$ wide. Total length of males, 5.9 mm ;

Carapace 2.9-4.3 mm long, 2.3-3.6 mm wide.

There is considerable variation in color and pattern. One female from Texas had black bands on its legs. The abdomen has a black folium in many females collected in Alberta, Montana, Wroming. Europe, and isolated other places (Figs. 101, 102); in females from other areas the folimm encloses symmetrical light patches (Fig. 100), or sometimes it has a reticulated patterm. The shape of the terminal apophysis and the length of the subterminal apophysis vary from specimen to specimen (Figs. 103, 104). Although the median apophysis of A. marmoreus is just as variable as that of other Araneus species (Grasshoff, 1968,
figs. 36e-h). A. marmoreus has escaped being split into several species.

Diagnosis. The common A. marmoreus differs from related A. corticarius and most other North American Arancus species by having an oval, subspherical abdomen. The female can be recognized by the large basal lamellae of the epigynum which almost always extend on each side beyond the base and are visible in ventral view (Figs. $1-3,107-109$). They also extend at times in A. iviei.

Males, despite the distinct palpus, are often misidentified. The terminal apophysis is selerotized and along its proximal side is a translucent edge. The terminal apophysis is paralleled by a subterminal apophysis (Figs. 4, 6, 103, 104, 110). In A. nordmanni and A. sacvus the subterminal apophysis is shorter. The embolus resembles that of A. corticarius, being semicircular below the tip. The embolus lamella, if it shows at all, is in the shape of a flat hook (Figs. 4-6, 111), not a piece with parallel sides as in A. trifolium (Fig. 179). The conductor (Figs. 5, 111) is much wider than that of A. trifolium (Fig. 179) and has a clearly set off, narrower tongue facing the median apophysis.

Habits. Araneus marmoreus prefers tall meadows, and places its webs in grasses or low shrubs, sometimes on trees. In the West it has been collected in light lodgepole pine (Pinus contorta) forest, its retreat under bark, in a relatively humid place. Kaston (1948) reports the egg sac to be " 13 mm in diameter, a flattened sphere of loose white silk. There were 653 orange, agglutinated eggs, each about 1.15 mm in diameter." The web has been illustrated by Comstock (1912, 1940) and Kaston (1948), the egg sac by Comstock. The web has 24-29 spokes and is made $50-90 \mathrm{~cm}$ high in grass.

Distribution. Arancus marmoreus is holarctic in distribution. The borders of its Eurasian distribution have not been critically mapped. The many literature citations of misidentified specimens will give a
mistaken idea of the distribution. In North America A. marmoreus is fonnd from Alaska to the southern United States (Map 4).

Araneus corticarius (Emerton) Figures 114-122; Map 5

Epeira corticaria Emerton, 1884, Trans. Conneeticut Aead. Sci., 6: 300, pl. 33, fig. 14, pl. 35, fig. 9, 9 . Two female syntypes from Beverly, Mass., in the Museum of Comparative Zoology, examined. McCook, 1893, American Spiders, p. 176, pl. 8, fig. 7, ㅇ. Emerton, 1909, Trans. Connecticut Acad. Sci., 14: 199, pl. 5, fig. 3, $\hat{0}$.
Epeira incestifica Keyserling, 1892, Die Spinnen Amerikas, 4: 132, pl. 7, fig. 98. Female holotype from Sitka, Alaska [?] (G. Mars), in the U. S. National Museum, examined.

Aranea corticaria, - Roewer, 1942, Katalog der Araneae, 1: 860. Kaston, 1948, Bull. Comnecticut State Geol. Natur. Hist. Surv., 70: 252, figs. $800-802$, 오, $\hat{\delta}$.
Aranca denningi Areher, 1951, Amer. Mus. Novitates, 1487: 30, fig. 81, of. Male holotype from The Pas, Manitoba, in the American Museum of Natural History, examined. NEW SYNONYMY. Arancus corticarins, - Bomnet, 1955, Bibliographia Araneorum, 2: 470.

Description. Female from Maine. Carapace brown with some hairs and some irregular marks. Sternum dark brown. Coxae light. Legs light, contrastingly banded. Anterior of dorsum of abdomen black with a white cross (Fig. 118). Venter black with a white bracket on each side. Abdomen with large humps. Eyes large and close together. Epigynum with a folded scape (Figs. 114, 116). Total length, 6 mm . Carapace, 2.1 mm long, 1.9 mm wide. First femur, 2.5 mm ; patella and tibia, 3.0 mm ; metatarsus, 1.6 mm ; tarsus, 0.8 mm . Second patella and tibia, 2.7 mm ; third, 1.6 mm ; fourth, 2.4 mm .

Male from Maine. Less contrastingly colored than female. Abdomen marked like that of female but with less contrast. Abdomen has humps laterally. First cosa with hook, second without spur. The second tibia is swollen. Total length, 4.7 mm . Carapace 2.5 mm long, 1.8 mm wide. First femur, 3.0 mm ; patella and tibia, 3.5 mm ;

Map 5. Distribution of Araneus carficarius (Emerton) and Araneus washingtani sp. n.
metatarsus, 1.8 mm ; tarsus, 0.8 mm . Second patella and tibia, 3.0 mm ; third, 1.8 mm ; fourth, 2.5 mm .

Variation. Total length of females varied between $5.2-8.0 \mathrm{~mm}$, the earapace 2.1-2.9 mm long and 1.9-2.3 mm wide. Total length of males, 4.2-5.2 mm. The shape of the abdomen is variable.

Diagnosis. The shape of the abdomen, with the humps projecting toward the sides, is not seen in any other large North American Arancus including A. washingtoni. The epigynum of the female (Figs. 114-117) resembles that of A. marmoreus, but the epigynal lamellae are smaller, only rarely visible in ventral view, and the median field behind the scape between the rims is wider than in A. marmoreus. The scape usually breaks off during mating.

The embolus shape (Figs. 119, 121, 122) resembles that of A. marmoreus, but the enormous conductor, its length half that of the bulb in ventral view (Fig. 120), and the longer median apophysis (Figs. 119,120) separate the species from A. marmoreus and A. washingtoni.

Hahits. Kaston (1948) reports having collected A. corticarius in moist meadows and woods. It has been collected from a cranberry bog in Massachusetts, from a swamp in Wisconsin, swept from a hemlock seedling (Tsuga canadensis) in a swamp in Pennsylvania.

Distribution. Araneus corticarins is found from Alaska to New England. Its known range matches the range of black spruce (Picea mariana) and tamarack (Larix laricina), both bog inhabitants. The southernmost records are Ice Mine, Potter Co., Pennsylvania, and Beverly Shores, Porter Co., Indiana; the northernmost, Rampart flouse, Yukon Terr. (Map 5).

Araneus washingtoni sp. n.

Figures 123-130; Map 5
IIolotype. Male from 3 miles up road, Mt. Washington [no date] (J. H. Emerton), in the Museum of Comparative Zoology. The species is named after George Washington, as is the mountain.

Description. Female. Carapace brown, stemum dark brown. Coxae light brown,

legs brown, indistinetly banded. Dorsum of abdomen with a folium and a black line between humps, darker anterior of line with a white cardiae mark and a transverse white line (Fig. 126). Venter of abdomen black with a white bracket on each side. Each side of abdomen has a black pateh which fades toward the venter. The shape of the abdomen resembles that of most other species having humps; the humps are on the dorsum rather than the sides. Total length, 6.5 mm . Carapace, 3.5 mm long, 2.5 mm wide. First femur, 3.0 mm ; patella and tibia, 4.0 mm ; metatarsus, 2.3 mm ; tarsus, 1.0 mm . Second patella and tibia, 3.5 mm ; third, 2.2 mm ; fourth, 1.0 mm .

Male. The coloration is like that of the female except that the legs are banded. The first coxa has a hook, the second lacks a spur. The sccond tibia is swollen and has strong setae. Total length, 5.0 mm . Carapace, 2.5 mm long, 2.0 mm wide. First femur, 2.9 mm ; patella and tibia, 3.5 mm ; metatarsus, 2.0 mm ; tarsus, 0.7 mm . Second patella and tibia, 3.0 mm ; third, 1.5 mm ; fourth, 2.2 mm .

Diagnosis. The female differs from 1. corticarius in having the humps of the abdomen dorsal rather than lateral (Fig. 126). The anterior section of the scape of the epigynum is posteriorly directed in A. washingtoni (Figs. 123, 124); in A. corticarius it is directed anteriorly and then folds back (Figs. 114-116). The male differs from A. corticarius by the dorsal position of the abdominal humps, by the much smaller conductor (Fig. 12S), and the shorter median apophysis (Figs. 127, 128).

Habits. Emerton collected the specimens on low bushes. The label was written in India ink and at some later time Emerton peneilled "corticaria" behind the inked Epeira. The female from New Brunswick was collected on balsam fir (Abies balsamea).

Distribution. Newfoundland to New Hampshire (Map 5).

Records. Newfoundland: Gambo, 25. IV. 1949, 오 (E. Palmén); Eddies Cove, west St. John Bay, 30. VII. 1949, ㅇ (E. Palmén). New Brunswick: Green River Forestry Station, 22 July 1965, 우; 18 July 1967, 2 © (T. R. Renault). New Hampshire: 2 오, 2 후 paratypes collected with the holotype.

Araneus alsine (Walckenaer)
 Figures 131-137

Aranea alsine Walckenaer, 1802, Faune Parisienne, 2: 193. Type for the Paris, France, vicinity, lost. Wiehle, 1931, in Dahl, Die Tierwelt Deutschlands, 23: 83, figs. 119-123, i, of. Roewer, 1942, Katalog der Araneae, 1: 781.
Epeira alsine, - Wiehle, 1927, Z. Morphol. Ökol. Tiere, 8: 493.
Araneus alsine, - Locket and Millidge, 1953, British Spiders, 2: 133, figs. 85d, 86d, ㅇ, of. Bonnet, 1955, Bibliographia Araneorum, 2: 429.

This Eurasian species, distributed from Europe to Kamchatka, has not been found in North America. It is very similar to A. iviei of North America. Araneus alsine is found on grasses of moist woods or clearings, and the hub of the web is about 15-20 em above the ground. The rolled-up leaf or leaves which are used as a retreat are pulled up from the ground (Wichle, 1927). A web with 20 spokes was illustrated by Wiehle (1931).

Araneus iviei (Archer)

Figures 138-151; Map 6
Aranea iviei Archer, 1951, Amer. Mus. Novitates, 1487: 33, fig. 53, ㅇ. Female holotype from Keene Valley, Essex Co., New York, in the American Nuseum of Natural History, examined.
Aranea sachimau Archer, 1951, Amer. Mus. Novitates, 1487: 33, fig. 55, 우. Female holotype from Norwell, Plymouth Co., Massachusetts, in the American Musemm of Natural History, examined. NEW SYNONYMY.
Description. Female paratype of A. iviei from New Jersey. Carapace, sternum, legs orange-brown without any marking. Abclomen whitish with an orange cast, and with a few whitish spots framed by darker orange. Venter between epigynum and

Map 6. Distribution of Araneus iviei (Archer), Araneus yukan sp. n., and Araneus graenlandicalus (Strand).
spinnerets has a white square with orange center. Abdomen lacks humps. Total length, 12 mm . Carapace, 5.0 mm long, 4.2 mm wide. First femur, 4.4 mm ; patella and tibia, 5.4 mm ; metatarsus, 3.2 mm ; tarsus, 1.5 mm . Second patella and tibia, 4.9 mm ; third, 2.9 mm ; fourth, 4.6 mm .

Male from Michigan. Carapace and sternum brown, darker on each side. Legs
brown, very indistinctly marked. Dorsum of abdomen whitish with outline of a folium. Brownish venter has a light mark followed by a dark mark between epigastric furrow and spinnerets. Coxa without hooks or spurs. Second leg not modified. Total length, 6.7 mm . Carapace, 4.2 mm long, 3.2 mm wide. First femur, 4.9 mm ; patella and tibia, 5.2 mm ; meta-
tarsus, 3.6 mm ; tarsus, 1.4 mm . Second patella and tibia, 4.2 mm ; third, 2.9 mm ; fourth, 4.1 mm .

Variation. Females vary from S.5-12 mm in total length, carapace $4.1-5.0 \mathrm{~mm}$ long, 3.2-4.2 mm wide. Males varied from 5-7 mm in total length, carapace 3.6-4.2 mm long, 2.9-3.2 mm wide. In posterior view no two epigyna are exactly alike (Figs. 140, 142). Figure 142 illustrates a specimen designated as paratype of A. sachiman by Archer.

Diagnosis. Araneus iviei superficially resembles A. trifolium; the genitalia are unlike those of any other North American species but very similar to those of the Eurasian A. alsine. The epigynum, unlike that of any other North American species, has a strongly domed base anteriorly and is truncate posteriorly (Figs. 138, 141). In A. iviei the shape of the median septum in posterior view narrows dorsally toward the abdomen (Figs. 140, 142), while in A. alsine it widens into a flat plate more or less truncate toward the abdomen (Figs. 133, 134).

The male's palpal conductor has a distal "pocket" (Figs. 146, 14S) unlike other Northern American Araneus species. It differs from A. alsine in the shape of the conductor, and in the shape of the embolus (Figs. 145-150).

Habits. The species has been collected from a cedar (Thuia occidentalis) swamp in Michigan, sweeping old fields in open forest vegetation on Isle Royale, on base of lodgepole pine (Pinus contorta) and in lodgepole woods in Alberta, and in coniferaspen (Populus tremuloides) with pockets of black spruce (Picea mariana) with dense undercover of rosebushes, grasses, and sedges in the damp area, at Lake George, Alberta (R. E. Leech, personal correspondence).

Distribution. From Alberta southeast to Pennsylvania. The northemmost record is Riverton, Manitoba, the southernmost Lenhartsville, Berks Co., Pennsylvania (Map $6)$.

Araneus quadratus Clerck Figures 152-158

Araneus quadratus Clerek, 1757, Svenska Spindlar, p. 27, pl. 1, fig. 3, ㅇ. Female holotype from Sweden in the Natural History Museum, Stockholm, lost. Locket and Millidge, 1953, British Spiders, 2: 130, figs. 84b, 85b, 86b, ㅇ, o. Bomnet, 1955, Bibliographia Araneormm, 2: 575 .
Aranea reaumurii Scopoli, 1763, Entomologia Carniolica, p. 393. Types from Austria. Scopoli's collection was destroyed about 1776. (Horn and Kahle, 1936, Entomol. Beihefte, 3: 252.) Wiehle, 1931, in Dahl, Tierwelt Deutschlands, 23: 79, figs. 115-118, ㅇ․ ㅇ. Roewer, 1942, Katalog der Araneae, 1: 804.
Epeira quadrata, - Wiehle, 1927, Z. Morphol. Ökol. Tiere, S: 496. Nielsen, 1932, Biology of Spiders, 2: 292.

Note. This European species closely related to A. yukon has not been found in America. Japanese specimens alleged to be A. quadratus were examined, but large differences in the shape of the conductor and median apophysis make me think neither specimen is correctly identified. Araneus quadratus reported from Greenland are A. groenlandicolus (Strand). The web is made in high grasses of moist areas, the center about 50 cm above the ground, and has about 20 spokes (Wiehle, 1931; Nielsen, 1932).

Araneus groenlandicolus (Strand) Figures 159-166; Map 6

Epeira quadrata, - Şrensen, 1898, Vidensk. Meddel. Naturhist. Foren. Kobeuhavn, 1898. Not A. quadratus Clerck.

Aranca reanmuri var. grocnlandicola Strand, 1906, Fama Arctica, 4: 458. New name for specimens of Epeira duadrata described by Sqrensen from Greenland. Female lectotype here designated from Ivigtut, Greenland, 15. VIII. 1889 (Lundbeck) in the Universitetets Zoologiske Museum, Copenhagen, examined.
Aranca manitobae Archer, 1951, Amer. Mus. Novitates, 1487: 37, figs. 51, 59, 62, ô. Male holotype from The Pas, Manitola, in the American Museum of Natural History, examined. NEW SYNONYMY.
Description. Female. Carapace light brown with median longitudinal darker band and a dark band near each margin. Distal tips of chelicerae brown. Labial

endites almost black except anterior border. Sternum black with a small, anterior median light mark. Legs very strongly banded. Abdomen white or red with white dorsal spots (Fig. 163). Venter is dark in front of spimerets, light behind epigymum, and has two longitudinal bands. Abdomen without humps. Total length, 9 mm . Carapace, 4.0 mm long, 3.3 mm wide. First femur, 3.5 mm ; patella and tibia, 4.3 mm ; metatarsus, 2.7 mm ; tarsus, 1.1 mm . Second patella and tibia, 4.5 mm ; third, 2.3 mm ; fourth, 3.5 mm .

Male holotype. Carapace, legs light brown. Stemum light brown with median longitudinal white line. Abdomen all white with white pigment spots around spinnerets. Coxae without hooks or spurs. Tibia of second leg swollen and with strong spines. Total length, 6.1 mm . Carapace, 3.2 mm long, 2.6 mm wide. First femur, 3.2 mm ; patella and tibia, 4.0 mm ; metatarsus, 2.7 mm . Second patella and tibia, 3.0 mm ; third, 1.9 mm ; fourth, 2.9 mm .

Variation. The scape of the epigynum of most females is broken off (Fig. 162), apparently it tears when mating. Females varied from 9-12 mm in total length, males from $5.5-7.5 \mathrm{~mm}$.

Diagnosis. Araneus groenlandicolus lacks humps on the abdomen. Females have been confused with A. trifolium because of the reddish coloration of the abdomen and the median dark carapace stripe; however, the epigynum of A. groenlandicolus is very different (Fig. 159-162). The epigynum has wider rims than that of A. quadratus; the inside edges of the rims are covered by the scape (Fig. 159) (often broken off). The male of A. groenlandicolus has strongly bent distal hooks on its median apophysis (Figs. 164, 165) differing from those of A. quadratus and A. yukon and other Araneus species.

Habits. Almost nothing is known about the habits of A. groenlandicolus, but it is assumed to prefer open ground to forest as do other species of Araneus with a
round abdomen. In Alberta it has been found in sedge.

Distribution. Alberta to Greenland and south to Mimesota and Maine (Map 6). Specimens examined from Greenland came from Ivigtut and Godthaabsfjord.

Araneus yukon sp. n.

Figures 167-173; Map 6
Holotype. Male from Snag, lat $62^{\circ} 24^{\prime}$, long $140^{\circ} 22^{\prime}$. Yukon Territory, 24 July 1948, in the American Museum of Natural History. The specific name is a noun in apposition.

Description. Female paratype. Carapace brown with darker median and lateral bands. Sternum very dark brownish black with median longitudinal line of white pigment. Legs brown with very distinet dark banding. Abdomen with a folium posteriorly, a median light longitudinal mark anteriorly. Venter light with two dark spots side by side and a dark ring around spinnerets. Spinnerets blackish brown. Abdomen oval to subspherical without humps. Total length, 10 mm . Carapace, 4.2 mm long, 3.5 mm wide. First femur, 4.0 mm ; patella and tibia, 4.9 mm ; metatarsus, 3.0 mm ; tarsus, 1.4 mm . Sceond patella and tibia, 4.4 mm ; third, 2.5 mm ; fourth, 4.0 mm .

Male holotype. Carapace with indistinet markings. Stemum dark with a median white line. Leg banding indistinct. Dorsum of abdomen has two pairs of white spots anterior to a dark folium and an anterior longitudinal white mark (Fig. 170). Ventral dark spots are fused to each other and the posterior one to the dark ring around the spimerets. There are no hooks or spurs on coxa. The second tibia is slightly swollen. Total length, 6.5 mm . Carapace, 3.4 mm long, 2.8 mm wide. First femur, 3.5 mm ; patella and tibia, 4.4 mm ; metatarsus, 3.0 mm ; tarsus, 1.3 mm . Sccond patella and tibia, 3.4 mm ; third, 2.0 mm ; fourth, 3.2 mm .

Diagnosis. Araneus yukon palpus differs
from that of related A. quadratus in having teeth on the lower distal lobe of the median apophysis (Fig. 172) instead of a straight carina; the conductor of A. yukon is wider and the "upper" lobe of the embolus (left in Figs. 171, 173) is wider than in A. quadratus (Fig. 158). European specimens showed little variation in these characters.

Habits. Firth River, a locality in which the species is found, is on the north slope of the British Mountains, 25 miles from the Arctic Ocean. Although north of the tree line, pockets of spruce (Pica sp.) to $3-4 \mathrm{~m}$ high occur in sheltered spots along the creeks; probably the specimen was found in these (R. E. Leech, in letter).

Records. Yukon Territory. Female paratype collected with holotype; Firth River, British Mountains, of paratype, 24. VII. 1956 (R. E. Leech) in the Canadian National Museum.

Araneus trifolium (Hentz), Shamrock Spider Figures 174-182; Map 7

?Epeira vulpecula Walckenaer, 1841, Histoire Naturelle des Insects Aptères, 2: 69. Syntypes are Abbot, Georgian Spider Illustrations, figs. 131, 356 from Georgia in the British Museum of Natural History, examined. A nomen dubium and a nomen oblitum.
?Epeira approximata Blackwall, 1846, Ann. Mag. Natur. Hist., 17(1): 80. Specimen from vicinity of Toronto, lost. A nomen dubium and nomen oblitum.
Epeira trifolium Hentz, 1847, J. Boston Soc. Natur. Hist., 5: 471, pl. 31, fig. 1, ㅇ. Types from Maine, destroyed. Emerton, 1884, Trans. Connecticut Acad. Sci., 6: 306, pl. 33, fig. 8, pl. 35, figs. 13, 14, 21, 22, 우, ㅅ. McCook, 1893, American Spiders, 3: 145, pl. 1, figs. 3-6, pl. 2, fig. 3, ㅇ, $\hat{0}$. Kaston, 1948, Bull. Connecticut Geol. Natur. Hist. Surv., 70: 258, figs. 823-825, 2047.
Epeira aurcola Hentz, 1847, J. Boston Soc. Natur. Hist., 5: 471, pl. 31, fig. 2, ㅇ. Type from Maine, destroyed.
Epeira trifolium var. candidans McCook, 1893, American Spiders, 3: 146, pl. 1, fig. 4, 오. Female holotype from California, lost, the color of the abdomen was yellowish-white.
Aranea trifolium, - Comstock, 1912, The Spider Book, p. 479, figs. 501-508, 우 1940, rev. ed., The Spider Book, p. 493, figs. 501-508, $\&$. Roewer, 1942, Katalog der Araneae, 1: 863.

Aranea gosogana Chamberlin, 1920, J. Entomol. Zool., 12: 8, pl. 4, fig. 6, ㅇ. Female holotype from desert region in California, in the Museum of Comparative Zoology, examined.
Arancus trifolium, - Bonnet, 1955, Bibliographia Araneorum, 2: 614.

Note. Epeira jaspidata Walckenaer, 1837, has been placed as a synonym, first by McCook: the type, Abbot, fig. 111, however, seems to have humps. Abbot's figure is either A. nordmanni or A. bicentenarius. However, Walckenaer indicated in the description of the tigure that the abdomen was round.

Description. Femak. Carapace brown with a lighter band on each side of a dark median longitudinal band; sides dark with a lighter brown border. Sternum dark brown. Legs brown with strongly marked darker bands. Dorsum of abdomen reddish with white spots (Fig. 177), venter usually reddish brown without markings in adult. A specimen from Ithaca, New York, measured 15 mm in total length. Carapace, 6.5 mm long, 5.5 mm wide. First femur, 6.3 mm ; patella and tibia, 8.0 mm ; metatarsus, 5.5 mm ; tarsus, 1.7 mm . Second patella and tibia, 6.9 mm ; third, 4.2 mm ; fourth, 6.7 mm .

Male. Carapace, stemum and legs brown, abdomen whitish, sometimes all white, sometimes with ventral marks. None of the corae have hooks or spurs. The tibia of the second leg is only slightly thicker than that of other legs. A specimen from Montana measured 7.5 mm in total length. Carapace, 4.2 mm long, 3.4 mm wide. First femur, 4.6 mm ; patella and tibia, 5.1 mm ; metatarsus, 3.5 mm ; tarsus, 1.5 mm . Second patella and tibia, 4.5 mm ; third, 2.7 mm ; fourth, 3.9 mm .

Variation. Many specimens have the dorsum of the abdomen white. Total length of females varied between $9-20 \mathrm{~mm}$. with carapace $4.0-6.5 \mathrm{~mm}$ long, $3.6-5.4 \mathrm{~mm}$ wide. Total length of males, $5-8 \mathrm{~mm}$, with carapace $3.0-3.6 \mathrm{~mm}$ long, $2.5-3.0 \mathrm{~mm}$ wide.

Map 7. Distribution of Araneus trifolium (Hentz).

Diagnosis. Araneus trifolium is not close to any other species, although females have been confused with A. groenlandicolus and A. iviei on account of the spherical abdomen, red coloration, and dark leg bands. But the epigynum of A. trifolium is very distinct: a scape (only rarely broken off) flanked on each side by a depression in the base; the margin of the depression and the depression itself are sclerotized and black posteriorly (Fig. 174).

The male palpus of A. trifolium has the embolus of an unusual shape (Figs. 17S, 180-182); the embolus lamella is a huge flat scale with parallel sides of about the same visible area or larger than the small, narrow conductor (Fig. 179). The lamella, always easily seen, readily separates males from all other North American species. As no illustrations of the male palpus have
been readily available, many males of this common species are misidentified in collections.

Habits. Araneus trifolium is found in meadows and edges of fields making its web between herbaceous plants, often goldemrod (Solidago sp.), or shrubs, with the hub about $0.5-2 \mathrm{~m}$ off the ground. The web has about 20 spokes. The web and egg sac have been illustrated by Comstock $(1912,1940)$. During the recent years of drought the spiders disappeared completely from the fields around our house in Massachusetts but reappeared with the first wet season in summer of 1967 , to reach unusual abundance in 1968 and 1969. Kaston (1947) describes the egg sacs after Scheffer as "white, about an inch in diameter and delicate enough for the mass of several hundred yellow eggs to show

through. The young leave the egg sae in fall or spring." The egg sac is illustrated in Comstock, 1912 and 1940.

Distrilution. Aranens trifolimm is found from Alaska to southern California and northern Florida (Map 7).

Araneus cavaticus (Keyserling) Plate 2; Figures 187-194; Map 8

Epeira catatica Keyserling, F882, Verh. Zool. Bot. Ges. Wien, 31: 269, pl. 11, fig. 1, ㅇ. Female holotype from a Kentucky cave, Carter Co., Kentucky (Sanborn, 1874) in the Museum of Comparative Zoology, examined.
Epeira cincrea Emerton, 1884, Trans. Connecticut Acad. Sci., 6: 302, pl. 33, fig. 10, pl. 35, figs. $7,8, \quad$. Female syntypes from Sable Chasm, New York, in the Museum of Comparative Zoology, examined.
Aranea cavatica, - Comstock, 1912, The Spider Book, p. 470, figs. 487-189, ㅇ. Roewer, 1942, Katalog der Araneae, 1: 859. Kaston, 1948, Bull. Connecticut Ceol. Natur. Hist. Surv., 70: 251, figs. 798-799, ㅇ․ © .
Araneus cavaticus, - Bonnet, 1955, Bibliographia Araneorum, 2: 453.
Note. Aranea sinistra F. P.-Cambridge, 1904, Biologia Centralia-Americana, 2: 510, pl. 48, fig. 21, \circ, from Omilteme, Mexico, may also be this species. The genitalia are similar but not identical. No specimens from intermediate areas were available. This species has been renamed A. sinistrella by Roewer, 1942, Katalog der Arancac.

Description. Female. Carapace yellowbrown, darker anterior of thoracic depression. Stemum dark brown. Coxae light yellow. Legs yellowish brown with darker brown bands. Abdomen gray to brown dorsally with an indistinct folium and anterior white mark (Fig. 190). Venter black between epigynum and spimerets, with a white bracket on each side. Abdomen with two humps and covered by short hairs on dorsum, longer hairs on sides, and fine hair between humps. Total length of a specimen from Kentucky, 18 mm . Carapace, 7.3 mm long, 5.9 mm vide. First femur, 10.0 mm ; patella and tibia, 11.8 mm ; metatarsus, 8.4 mm ; tarsus, 2.7 mm .

Second patella and tibia, 11.1 mm ; third, 6.0 mm ; fourth, 9.6 mm .

Male. Coloration like that of female, usually light. The tibia is not modified and the coxae lack hooks or spurs. A specimen from Kentucky measured 15 mm in total length. Carapace, 7.6 mm long, 6.7 mm wide. First femur, 13.5 mm ; patella and tibia, 17.2 mm ; metatarsus, 13.8 mm ; tarsus, 3.4 mm . Second patella and tibia, 15.0 mm ; third, 8.4 mm ; fourth, 12.5 mm .

Variation. Females vary from $13-22 \mathrm{~mm}$ in total length, with the carapace 6.1-7.5 mm long, $5.4-6.1 \mathrm{~mm}$ wide. Males vary from 10-19 mm in total length, with the carapace $6.9-8.7 \mathrm{~mm}$ long, $5.2-7.8 \mathrm{~mm}$ wide.

There is little color or morphological variation in this light-colored species.

Diagnosis. The epigynum of the female of this large humpbacked species ean be confused with that of A. nordmamni. In posterior view the epigynum has a median selerotized triangular piece (Fig. 189), that of A. nordmanni encloses a heart-shaped depression (Figs. 89, 92). The males can be recognized by their giant size and long legs. The large size separates males from those of the closely related Pacific coast A. gemma which has a somewhat similar embolus and terminal apophysis.

IIabits. A. cavaticus makes its large webs with about 20 spokes (Plate 2) on barns, on porches, and bridges. One old collection from 1874 indicated that the spider was collected from under a natural bridge in Kentucky. It also has been reported from under overhanging cliffs, probably its original habitat. One male was collected while being fed on by a female A. diadematus in Ontario. Archer (1940, J. Alabama Acad. Sci., 12: 2S) reports the species from caves in Alabama.

Distribution. Aramens cavaticus is found from New Brunswick, eastem Ontario and Nova Scotia to Texas. The southermmost record is of a pair collected at Houston, Texas (Map 8).

Map 8. Distribution af Araneus cavaticus (Keyserling), Araneus gemmaides Chamberlin and Ivie, Araneus gemma (McCaak), Araneus pima sp. n., and Araneus illaudafus (Gertsch and Mulaik).

Araneus gemmoides Chamberlin and Ivie Plate 2; Figures 195-202; Map 8
Epeira gemma, - Keyserling, 1892, Dic Spimen Amerikas, 4: 115, pl. 6, fig. 85, ㅇ. Not A. gemma McCook.
Araneus gemmoides Chamberlin and Ivie, 1935, Bull. Univ. Utah, Biol. Ser., 2(8): 22, pl. 10, fig. 80, ㅇ. Female holotype from Salt Lake City belonging to the Utah collection, kept at
the American Museum of Natural flistory, examined. Bonnet, 1955, Bibliographia Araneorum, 2: 507.
Aranea gemmoides, - Roewer, 1942, Katalog der Araneae, 1: 860.
Arancus canmorus Schenkel, 1950, Verh. Naturf. Ges. Basel, 61: 65, ㅇ. Female lectotype, here designated, from Canmore, Banff National Park, Canada, in the Naturhistorisches Muscum Basel, examined. NEW SYNONYMY.

Description. Female from Wisconsin. Carapace light brown, sternum brown with a median light longitudinal streak. Coxae yellowish. Legs yellow-brown, with indistinct darker bands. Dorsum of abdomen light grayish brown with almost no pattem at all. Venter with two longitudinal dark marks behind epigynum and two light marks in front of spinnerets. Total length, 15 mm . Carapace, 4.6 mm long, 4.2 mm wide. First femur, 4.9 mm ; patella and tibia, 5.9 mm ; metatarsus, 3.7 mm ; tarsus, 1.5 mm . Second patella and tibia, 5.5 mm ; third, 3.0 mm ; fourth, 4.9 mm .

Male from Idaho. Coloration almost like that of female. Abdomen with remains of outline of a folium and an anterior median clorsal light streak and humps large. Covae, legs not modified. Total length, S mm . Carapace, 4.5 mm long, 3.5 mm wide. First femur, 5.7 mm ; patella and tibia, 6.7 mm ; metatarsus, 4.5 mm ; tarsus, 1.5 mm . Second patella and tibia, 5.7 mm ; third, 3.5 mm ; fourth, 4.9 mm .

Variation. Total length of females varied from $13-25 \mathrm{~mm}$; carapace $6.3-8.5 \mathrm{~mm}$ long, $5.0-7.5 \mathrm{~mm}$ wide. Total length of males $5.4-7.9 \mathrm{~mm}$; carapace $3.2-4.3 \mathrm{~mm}$ long, $2.6-3.5 \mathrm{~mm}$ wide.

This species, unlike A. gemma, shows little variation except in color. Sometimes there is a distinct folium, sometimes not, and there may be a white cardiac mark. Only on the Pacific coast where it is in contact with the very similar A. gemma are some specimens dark. A single British Columbia specimen was black like A. saevus.

Diagnosis. The very tiny epigynum with a triangular scape (Fig. 195) readily separates A. gemmoides from other species, except for some A. gemma which may be hybrids. Males have a small bulb barely larger than the tibia (Figs. 199, 200); these proportions separate males from A. gemma. The male of A. gemmoides is much smaller in size than that of A. cavaticus.

Habits. The habitat of this species is similar to that of the castern A. cavaticus.

I have collected it from under eaves of houses and on barns in Wisconsin that accommodated its huge web with about 20 spokes (Plate 2). But in the west it seems to have been collected in lodgepole (Pinus contorta) woods, and on the Pacific coast on houses. It has been found in natural situations in cave entrances, rocky ledges, and one record is from Manzanita chaparral, 1100 m , San Gabriel C., Los Angeles Co., California (L. Pinter).

The egg sac of A. gemmoides made in the laboratory is a fluffy, loosely woven sphere of orangish silk, 2 cm in diameter. A color illustration can be found in Gertsch (1949, American Spiders, Van Nostrand).

Distribution. Araneus gemmoides is found from British Columbia to Wisconsin, south to Missouri and Arizona (Map $8)$. It appears rare along the Pacific coast. Isolated records are: Michigan, Rose Lake, Clinton Co. (D. E. Bixler); Silver Iill, Alabama, Scpt. 1945 (S. Nelson); and San Lorenzo Island [Baja Califormia].

Araneus gemma (McCook) Figures 203-215; Map 8

Epeira gemma McCook, 1888, Proc. Acad. Natur. Sci. Philadelphia, p. I93, figs. 1, 2, 아. Female lectotype here designated from California in the Philadelphia Academy Natural Sciences, examined. 1894, American Spiders, 3: 182, pl. 9, figs. 1, 2, pl. 10, fig. 6, ㅇ, ㅇ.
Arancus gemmus, - Chamberlin and Ivie, 1935, Bull. Univ. Utah, Biol. Ser., 2(8): 2I, pl. I 0 , fig. 79, 9.
Arancus pirus Chamberlin and Ivie, 1935, Bull. Univ. Utah, Biol. Ser., $2(8)$: 22 , pl. 10, fig. 81, ㅇ. Female holotype from Fillmore, California, in the University of Utah collection kept at the American Museum of Natural History, examined. NEW SYNONYMY.
Araneus gemma, - Bonnet, 1955, Bibliographia Araneorum, 2: 506.

Note. As pointed out first by Chamberlin and Ivie, McCook's description is a composite. The two syntypes are different species. One is clearly the common species in the San Diego, California, area, the type locality. The other is probably the

 palpus. 199. Mesal. 200. Ventral. 201, 202. Embolus. 201. With cap. 202. Without cap. (nia). 203, 205, 207 Male palpus. 211. Mesal. 212. Ventral. 213, 214. Embolus. 213. With cap. 214. Without cap Figures 215-217. Epigynum of suspected cross A. gemmoides X A. gemmo. (Size indicators 0.5 mm , for embolus tips 0.05 mm , for abdomens 5 mm)
same as what is called A. pima here. Other specimens in the McCook collection were A. gemmoides. The specimen which may be A. pima was not chosen lectotype because it either has the wrong collecting locality or comes from the very border of its range. Also the specimen appeared to be an atypical A. pima.

To favor stability of names, the other specimen was chosen lectotype even though as a result A. pirus will have to be synonymized. The range of the species whose name is now A. gemma is essentially that given by McCook and also McCook's description matches this species. Araneus gemma of Chamberlin and Ivie is certainly this species although the specimens could not be located. The name A. gemma has at times been used for A. pima on collecting vials only. The name gemma is a noun in apposition; its ending does not change with the gender of the genus (Bonnet, 19.55).

Description. Female from California. Carapace maculated brown with some gray pattern. Legs yellowish, indistinctly banded brown. Abdomen brownish with a median longitudinal white line, or line absent. Venter with a black band enclosed by white brackets. Abdomen with large humps (Fig. 210). Total length, 12 mm . Carapace, 5.3 mm long, 4.6 mm wide. First femur, 5.9 mm ; patella and tibia, 8.2 mm ; metatarsus, 5.0 mm ; tarsus, 1.9 mm . Second patella and tibia, 8.0 mm ; third, 4.6 mm ; fourth, 6.8 mm .

Male. Carapace, sternum, legs yellowbrown. Abdomen with a folium and anterior median white mark. Venter gray with a white bracket on each side. First cosa with a small tubercle on distal margin. Sccond tibia not modified. Total length, 8 mm . Carapace, 4.2 mm long, 3.3 mm wide. First femur, 5.9 mm ; patella and tibia, 7.0 mm ; metatarsus, 4.6 mm ; tarsus, 1.7 mm . Sccond patella and tibia, 6.0 mm ; third, 3.3 mm ; fourth, 4.9 mm .

Variation. Females vary 9-19 mm in total length; carapace $4.4-6.4 \mathrm{~mm}$ long,
$3.8-6.1 \mathrm{~mm}$ wide. Males vary $5.8-8.5 \mathrm{~mm}$ in total length; carapace $3.1-4.5 \mathrm{~mm}$ long, $2.5-3.6 \mathrm{~mm}$ wide.

The color varies in alcoholic specimens from light gray to almost black, some have two bars on the venter. Hardly two specimens have similar epigyna. It is believed that the species hybridizes with Araneus gemmoides and introgression is taking place. The male palpi, similar to those of A. gemmoides except for proportions, were not carefully studied for variation. (See introduction under species problems.)

Diagnosis. The short scape of the epigynum differs from that of related species in having a median ridge (Figs. 203, 205, 207, 208). But some females cannot be separated from A. gemmoides. (See Variation above and introduction under species problems.) The males are much smaller in size than those of the eastern A. cavaticus. The palpus has a larger bulb and smaller tibia (Figs. 211, 212) than the palpus of A. gemmoides. The upper surface of the embolus differs (Figs. 211, 213, 214) from that of A. gemmoides and the terminal apophysis is more pointed.

Note. McCook when describing A. gemma must have noted the problems of variation and applied one name to A. gemmoides and A. gemma. Presumably he could not readily separate the specimens which he had from California. Chamberlin and Ivie having smaller collections at hand used gemma for some specimens (Chamberlin and Ivie, 1935, fig. 79) and called others A. pirus (Chamberlin and Ivic, 1935, fig. 81), a reasonable judgment if only very few specimens are cxamined.

Habits. Little is known of the habits of A. gemma, although they are probably the same as those of A. cavaticus and A. gemmoides. One specimen was collected on a redwood (Sequoia sempervirens) trunk, San Jose, California. One from a porch at Walla Walla, Washington, others from Moscow, Idaho, came in the same collection with A. gemmoides. One A. gemma was collected from a hole in an olive tree

(Olea europea) feeding on a ruby-crowned kinglet (Regulus calendula) which was caught in its web (Pasadena, Califomia, 5 November, 1942, Mrs. H. Michener).

Distribution. Araneus gemma is found from southem Alaska to southem California; the northermmost collections are from Ketchikan, Alaska, the eastemmost from Bigfork, Montana (Map 8).

Araneus pima sp. n.
Plate 1, 4; Figures 218-232; Map 8
Holotype. Female holotype from Madera Canyon, Santa Rita Mountains, Pima Co., Arizona, 29 July 1958 (A. Ross) in the American Muscum of Natural History. The specific name is a noun in apposition after the type locality.

Description. Female from Arizona. Carapace brown. Stemum brown with median area lighter. Legs brown. Abdomen graybrown, without folium, the venter with a pair of parallel longitudinal black bars surrounded by white (Plate 4, Fig. 227). Humps very large. Abdomen covered by sparse long setae. Total length, 20 mm . Carapace, 8.0 mm long, 6.4 mm wide. First femur, 7.8 mm ; patella and tibia, 9.8 mm ; metatarsus, 6.5 mm ; tarsus, 2.2 mm . Second patella and tibia, 9.6 mm ; third, 5.5 mm ; fourth, 8.9 mm .

Male from Arizona. Coloration like that of female except that legs show some banding and abdomen has a folium and anterior median longitudinal white line. Coxae and second tibia are not modified. Total length, 9 mm . Carapace, 5.5 mm long, 4.3 mm wide. First femur, 7.0 mm ; patella and tibia, 10.0 mm ; metatarsus, 5.9 mm ; tarsus, 1.9 mm . Second patella and tibia, 7.6 mm ; third, 4.2 mm ; fourth, 6.4 mm .

Variation. The largest female measured 27 mm in total length; the carapace was not measured. Another male measured 5.2 mm in total length, carapace, 2.5 mm long, 2.0 mm wide. Although what are believed to be tips of A. illaudatus emboli are found
at times in the groove of the epigynum, the species do not seem to hybridize. There is not much variation except in length of scape.

Diagnosis. The flat rounded scape of the epigynum (Figs. 218, 221, 224) with a deep wide groove under it (Figs. 220, 223) distinguishes females of A. pima from A. gemmoides and A. gemma. The males are distinguished from A. gemma by the shape of the median apophysis, by having the median spine joined with the distal one, and by the truncate embolus (Figs. 228, 232). The more blunt terminal apophysis (Figs. 228, 229) and the shape of the median apophysis with the spines joined distinguishes A. pima from A. illaudatus.

Habits. Araneus pima has been collected under eaves of buildings of the Southwestern Research Station, near Portal, Arizona, under a bridge in New Mexico, along a trail in the Grand Canyon, and in cave entrance of O.T.L. cave north of Alpine, Texas.

The eggs are in an oval mass 2 cm long, 1.8 cm wide, 1 cm thick. About 700 eggs were estimated on the surface of the clump of eggs, which must have contained more than a thousand. A loose pink woolly web $4-5 \mathrm{~cm}^{2}$ surrounded the eggs, quite similar to the egg sac of A. gemmoides (Plate 1).

Note. In some collections specimens of this species had been incorrectly determined as A. gemma. It is not A. gemma of McCook nor of Chamberlin and Ivie (1935, fig. 79).

Distribution. Araneus pima is found from eastem California to Utah and Arizona. Localities at the border of the range are: Gateway, Oregon, Kerrville, Texas (Map 8). Female and male paratypes from the type locality have been collected.

Araneus illaudatus (Gertsch and Mulaik) Figures 233-240; Map 8
Aranea illaudata Gertsch and Mulaik, 1936, Amer. Mus. Novitates, 863: 19, figs. 36, 37, ot. Male holotype from Edinburg, Texas, in the American Museum of Natural History, examined. Archer,

1951, Amer. Mus. Novitates, 1487: 36, fig. 74, ô (not fig. 67 오).

Note. Archer (1951) matched the wrong female to the male deseribed previously as A. illandatus. Areher's female is an A. nordmanni and as Archer correctly points out is quite different from females of A. cavaticus group.

Description. Female from Arizona. Carapace yellowish with dark brown mottling. Sternum black, coxae yellowish, legs banded yellowish and dark brown. Dorsum of abdomen with two rows of transverse black marks pointing posteriorly towards the middle on a mottled background (Fig. 236). A median dorsal longitudinal line of white spots not always present. Venter with a black band between pedicel and spinnerets containing a pair of prominent white spots side by side and sometimes a smaller pair of white spots. Abdomen with two humps. Total length, 11 mm . Carapace, 3.8 mm long, 3.4 mm wide. First femur, 4.2 mm ; patella and tibia, 5.5 mm ; metatarsus, 3.7 mm ; tarsus, 1.4 mm . Second patella and tibia, 5.0 mm ; third, 3.0 mm ; fourth, 4.9 mm .

Male holotype. Carapace brown. Sternum brown. Legs yellow-brown. Abdomen yellow-brown. Dorsum with distinet folium, anterior border has a white cross. Venter with a pair of white spots side by side. Coxae and second tibia not modified. The abdomen has two distinet humps. Total length, 3.6 mm . Carapace, $2.0{ }^{\circ} \mathrm{mm}$ long, 1.4 mm wide. First femur, 2.5 mm ; patella and tibia, 2.8 mm ; metatarsus, 1.8 mm ; tarsus, 0.9 mm . Sccond patella and tibia, 2.3 mm ; third, 1.3 mm ; fourth, 2.0 mm .

Diagnosis. The female scape is constricted at its base and almost diamond shaped (Fig. 233), quite different from that of the related A. pima (Figs. 218, 221, 224). The male palpus has the spines of the median apophysis farther apart and the terminal apophysis more pointed and twisted (Figs. 238, 239) than that of

Araneus pima. The cap of the embolus is the longest of any Araneus species, longer than the embolus (Fig. 240).

Habits. One female collected in the Chiricahua Mts., Arizona, at 7500-9000 feet [$2300-2900 \mathrm{~m}$] had its web on brush under pines in August.

Distribution. Araneus illaudatus is found from westem Texas to Arizona (Map 8).

REFERENCES

Archer, A. F. 1951a. Studies in the orbweaving spiders (Argiopidae) 1. Amer. Mus. Novitates, 1487: 1-52.
—_ 1951b. Studies in the orbweaving spiders (Argiopidae) 2. Amer, Mus. Novitates, 1502: 1-34.
Bonnet, P. 1955-1961. Bibliographia Araneormm. Toulouse, Vols. 2, 3.
Brown, W. L., and E. O. Wilson. 1956. Character displacement. System. Zool., 5: 49-64.
Chamberlin, R. V., and W. Ivie. 1935. Miscellaneous new American Spiders. Bull. Univ. Utah, Biol. Ser., 2(4): 1-79.
1944. Spiders of the Georgia region of North America. Bull. Univ. Utah, Biol. Ser., 8(5): 1-267.
Conistock, J. H. 1910. The palpi of male spiders. Ann. Entomol. Soc. Amer., 3: 161-185.
Gertsch, W. J. 1964. The spider gemus Zygiella in North America (Araneae, Argiopidae). Amer. Mus. Novitates, 2188: 1-21.
Grasshoff, M. 1964. Die Kreuzspinme Aranens pallidus-ihr Netzbau und ihre Paarungsbiologie. Natur. Mus., 94: 305-314.
——. 1968. Morphologische Kriterien als Ausdruck von Artgrenzen bei Radnetzspinnen der Subfamilie Araneinae (Arachmida: Araneae: Araneidae). Abhandl. Senckenbergischen Naturforsch. Ges., 516: 1-100.
Helsdingen, P. J. van. 1965. Sexual behavior of Lepthyphantes leprosits with notes on the function of the genital organs. Zool. Med., 41: 15-42.
International Code of Zoological Nomenclature. 1964. Int. Trust Zool. Nomencl., London.
Levi, H. W. 1957a. The spider genera Enoplognatha, Theridion and Paidisca in America north of Mexico (Araneae, Theridiidae). Bull. Amer. Mus. Nat. Hist., 112: 1-123.
. 1957 b . The spider genera Crustulina and Steatoda in North America, Central America and the West Indies (Araneae, Theridiidae). Bull. Mus. Comp. Zool., 117: 367-124.

- 1968. The spider genera Gea and Argiope
in Ameriea (Araneae: Araneidae). Bull. Mus. Comp. Zool., 136: 319-352.
-(in press). Problems in the reproductive physiology of the spider palpus. Bull. Mus. Natl. Hist. Natur. Paris.
, And L. R. Levi. 1961. Some comments on Walckenaer's Names of American Spiders,
based on Abbot's drawings. Psyche, 68: 53-57.
Wiemes, H. 1931. Araneidae. In F. Dahl, Die Tierwelt Deutschlands, 23(6): 1-136.
- 1963. Beiträge zur Kenntnis der deutsehen Spinnenfauna III. Zool. Jahrb. Abt. System., 90: 227-298.

INDEX

Valid names are printed in italics. Page numbers refer to main references, starred page numbers to illustrations.
alsine, Aranens, 161*, 162
andrewsi, Aranea, 146
andrewsi, Arancus, 145*, 146
angulata, Aranea, 142
angulatus, Arancus, 141*, 142
approximata, Epeira, 167
Aranea, 133
Arancus, 133
aureola, Epeira, 167
bicentenaria, Aranea, 143
bicentenaria, Epeira, 143
bicentenarius, Aramens, 139*, 143, 145*
Burgessia, 133
candidans, Epeira, 167
cammorus, Araneus, 171
eavatica, Aramea, 170
cavatica, Epeira, 170
cavaticus, Arancus, 169*, 170
cinerea, Epeira, 170
corticaria, Aranea, 158
corticaria, Epeira, 158
corticarius, Arancus, 158, 159*
darlingtoni, Aranea, 152
demningi, Aranea, 158
diadema, Epeira, 147
diademata, Aranea, 147
diadematus, Arancus, 147, 149*, 153*, 169*
Epeira, 133
Euaranea, 133
gemma, Araneus, 172, 173*
gemma, Araneus, 176
gemma, Epeira, 171, 172
gemmoides, Araneus, 171, 173*
gemmus, Araneus, 172
gigas, Aranea, 156
gigas, Araneus, 143
gigas, Epeira, 143
gosogana, Aranea, 167
groenlandicolus, Araneus, 164, 165*
illaudata, Aranea, 176
illaudatus, Arameus, 175*, 176
incestifica, Epeira, 158
insularis, Epeira, 156
iviei, Aranea, 162
ivici, Arancus, 161*, 162
jaspidata, Epeira, 167
kisatchia, Aranea, 143
manitobae, Aranea, 164
marmorea, Epeira, 156
marmoreus, Arancus, 141*, 155*, 156, 159*, 169*
Neopora, 133
nigra, Epeita, 148
nordmanni, Aranea, 150
nordmami, Arancus, 150, 151*, 153*, 155*
nordmanni, Epeira, 150
obesa, Epeira, 156
pima, Arancus, 140*, 175*, 176
pirus, Araneus, 172
psendomelaena, Aranea, 152
quadratus, Arancus, 164, 165*
raji, Aranea, 156
raji, Epeira, 156
reaummrii, Aranea, 164
sachimau, Aranea, 162
saeva, Aranea, 148
saeva, Epeira, 148
saceus, Arancus, 141*, 148, 149*, 151*
santarita, Aranea, 150
santarita, Arancus, 149*, 150
silvatica, Epeira, 148, 150
sinistra, Aranea, 170
sinistrella, Aranea, 170
solitaria, Aranea, 148
solitaria, Epeira, 148
trifolium, Aranea, 167
trifolium, Arancus, 167, 169*
trifolimm, Epeira, 167
tusigia, Aranea, 156
vulpecula, Epeira, 167
washingtoni, Aramens, 155*, 159*, 160
yukon, Araneus, $165^{*}, 166$

[^0]: ${ }^{1}$ I am following the purpose of the International Code on Zoological Nomenclature as expressed in its Preamble, although other authors have occasionally in my opinion interpreted individual provisions out of the context to obligate the changing of names. For many common North American species older names are available, but these often have doubtful application as the types have been lost, and interpretation of the usually inadequate description depends on the experience of the reader. Doubtful also are many of the names used by Chamberlin and Ivie (1944) in

[^1]: ${ }^{1}$ The Intemational Commission on Zoological Nomenclature will be asked to place the name Epeira gigas Leach on the Official List of Rejected Names in Zoology and the name Epeira bicentenaria McCook on the Official List of Specific Names in Zoology.

[^2]: ${ }^{1}$ Garden Spider in Great Britain.

[^3]: 39. Figures 42-51. A. saevus (L. Koch). 42-50. Epigyna. 42-44. (Colarado). 45-50. (New York). 42, 45, 48. Ventral. 43, 46, 49. Lateral. 44, 47, 50. Posterior. 51. Fe-
 male abdamen.

 Figures 52-54. A. sontarito (Archer) epigynum. 52. Ventral. 53. Lateral. 54. Posterior. (Size indicators 0.5 mm , embolus tips 0.05 mm , and abdamens 5 mm)

[^4]: Figures 61-75. A. nordmanni (Thorell\}, palpus. 61, 62. (Colorado). 63, 64. (Massachusetts). 65, 66. (Arizona). 67, 68. (Montana). 61, 63, 65, 67. Mesal. 62, 64, 66, 68. Ventral. 69-75. Embolus. 69, 70. (Colorado). 71. (Arizona). 72. (New Mexico). 73, 74. (Montana). 75. (Massachusetts). 69, 73. With cap.
 (Size indicators 0.5 mm , embolus tips 0.05 mm)

